Tính
C = \(\frac{1}{5.10}+\frac{1}{10.5}+........+\frac{1}{2015+2020}\)
Tìm x
1) \(\frac{-7}{4}x\cdot\left(\frac{33}{12}+\frac{3333}{2020}+\frac{333333}{303030}+\frac{33333333}{42424242}\right)=22\)
2) \(\frac{1}{2016}:2015\cdot x=\frac{-1}{2015}\)
a) 74x.(3312+33332020+333333303030+3333333342424242)=32\frac{7}{4}x.\left(\frac{33}{12}+\frac{3333}{2020}+\frac{333333}{303030}+\frac{33333333}{42424242}\right)=3247x.(1233+20203333+303030333333+4242424233333333)=32
74x.(3312+3320+3330+3342)=32\frac{7}{4}x.\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)=3247x.(1233+2033+3033+4233)=32
74x.(333.4+334.5+335.6+336.7)=32\frac{7}{4}x.\left(\frac{33}{3.4}+\frac{33}{4.5}+\frac{33}{5.6}+\frac{33}{6.7}\right)=3247x.(3.433+4.533+5.633+6.733)=32
74x.33.(13−14+14−15+15−16+16−17)=32\frac{7}{4}x.33.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)=3247x.33.(31−41+41−51+51−61+61−71)=32
74x.33.(13−17)=32\frac{7}{4}x.33.\left(\frac{1}{3}-\frac{1}{7}\right)=3247x.33.(31−71)=32
74x.33⋅421=32\frac{7}{4}x.33\cdot\frac{4}{21}=3247x.33⋅214=32
b) 13+16+110+115+...+2x.(x−1)=20072009\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+...+\frac{2}{x.\left(x-1\right)}=\frac{2007}{2009}31+61+101+151+...+x.(x−1)2=20092007
26+212+220+230+...+2(x−1).x=20072009\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+\frac{2}{30}+...+\frac{2}{\left(x-1\right).x}=\frac{2007}{2009}62+122+202+302+...+(x−1).x2=20092007
22.3+23.4+24.5+25.6+...+2(x−1).x=20072009\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+\frac{2}{5.6}+...+\frac{2}{\left(x-1\right).x}=\frac{2007}{2009}2.32+3.42+4.52+5.62+...+(x−1).x2=20092007
2.(12−13+13−14+14−15+15−16+...+1x−1−1x)=200720092.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{x-1}-\frac{1}{x}\right)=\frac{2007}{2009}2.(21−31+31−41+41−51+51−61+...+x−11−x1)=20092007
2.(12−1x)=200720092.\left(\frac{1}{2}-\frac{1}{x}\right)=\frac{2007}{2009}2.(21−x1)=20092007
1−2x=200720091-\frac{2}{x}=\frac{2007}{2009}1−x2=20092007
2x=22009\frac{2}{x}=\frac{2}{2009}x2=20092
=> x = 2009
a) \frac{7}{4}x.\left(\frac{33}{12}+\frac{3333}{2020}+\frac{333333}{303030}+\frac{33333333}{42424242}\right)=3247x.(1233+20203333+303030333333+4242424233333333)=32
\frac{7}{4}x.\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)=3247x.(1233+2033+3033+4233)=32
\frac{7}{4}x.\left(\frac{33}{3.4}+\frac{33}{4.5}+\frac{33}{5.6}+\frac{33}{6.7}\right)=3247x.(3.433+4.533+5.633+6.733)=32
\frac{7}{4}x.33.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)=3247x.33.(31−41+41−51+51−61+61−71)=32
\frac{7}{4}x.33.\left(\frac{1}{3}-\frac{1}{7}\right)=3247x.33.(31−71)=32
\frac{7}{4}x.33\cdot\frac{4}{21}=3247x.33⋅214=32
đến đây thì bn tự lm đk r
Tìm x
\(\frac{x-2017}{2015.2016}+\frac{x-2018}{2016.2017}+\frac{x-2019}{2017.2018}+\frac{x-2020}{2018.1019}=\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}+\frac{1}{1018}\)
\(A=-\frac{1}{2}\left(17,5-7,5\right)-\frac{2015}{2016}\left(2018-2\right)\)
=> \(A=-\frac{1}{2}\left(10\right)-\frac{2015}{2016}\left(2016\right)=-5-2015=-2020\)
Trả lời :
- 2 bn kia ở trong câu hỏi này có ai làm đúng đâu.
- Chúc bạn học tốt !
- Tk cho mk nha !
Bài 1: Tính GTBT một cách hợp lí:
\(A=\frac{7}{4}.\left(\frac{3333}{1212}.\frac{3333}{2020}.\frac{3333}{3030}.\frac{3333}{4242}\right)\)
Bài 2: So sánh \(A=\frac{2^{2015}+1}{2^{2015}-1}\)và \(B=\frac{2^{2015}-3}{2^{2015}-5}\)
bao quynh Cao bạn ơi hình như bn làm sai đề ạ 7/4 mà sao lại 4/7 ạ
Giải phương trình :
a) \(\frac{x+1}{2020}+\frac{x+2}{2019}+\frac{x+3}{2018}=\frac{x+4}{2017}+\frac{x+5}{2016}+\frac{x+6}{2015}\)
b) \(\frac{2-x}{2004}-1=\frac{1-x}{2005}-\frac{x}{2006}\)
a, Làm
\(\frac{x+1}{2020}+\frac{x+2}{2019}+\frac{x+3}{2018}=\frac{x+4}{2017}+\frac{x+5}{2016}+\frac{x+6}{2015}\)
<=>\(\frac{x+2021}{2020}+\frac{x+2021}{2019}+\frac{x+2021}{2018}=\frac{x+2021}{2017}+\frac{x+2021}{2016}+\frac{x+2021}{2015}\)
<=>\(\left(x+2021\right)\left(\frac{1}{2020}+\frac{1}{2019}+\frac{1}{2018}-\frac{1}{2017}-\frac{1}{2016}-\frac{1}{2015}\right)=0\)
<=> x+2021=0
<=> x=-2021
Kl:......................
b, Làmmmmm
\(\frac{2-x}{2004}-1=\frac{1-x}{2005}-\frac{x}{2006}\)
<=> \(\frac{2006-x}{2004}=\frac{2006-x}{2005}+\frac{2006-x}{2006}\)
<=> \(\left(2006-x\right)\left(\frac{1}{2004}-\frac{1}{2005}-\frac{1}{2006}\right)=0< =>2006-x=0\)
<=> x=2006
Kl:..............
\(1-\frac{1}{5.10}-\frac{1}{10.15}-\frac{1}{15.20}-....-\frac{1}{95.100}\)
\(1-\frac{1}{5.10}-\frac{1}{10.15}-\frac{1}{15.20}-...-\frac{1}{95.100}\)
\(=1-\left(\frac{1}{5.10}+\frac{1}{10.15}+\frac{1}{15.20}+...+\frac{1}{95.100}\right)\)
\(=1-\frac{1}{5}.\left(\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+\frac{1}{15}-\frac{1}{20}+...+\frac{1}{95}-\frac{1}{100}\right)\)
\(=1-\frac{1}{5}.\left(\frac{1}{5}-\frac{1}{100}\right)\)
\(=1-\frac{1}{5}.\frac{19}{100}\)
\(=1-\frac{19}{500}\)
\(=\frac{481}{500}\)
\(1-\frac{1}{5.10}-\frac{1}{10.15}-\frac{1}{15.20}-.....-\frac{1}{95.100}\)
\(=1-\left(\frac{1}{5.10}+\frac{1}{10.15}+\frac{1}{15.20}+...+\frac{1}{95.100}\right)\)
Đặt \(C=\frac{1}{5.10}+\frac{1}{10.15}+\frac{1}{15.20}+....+\frac{1}{95.100}\)
\(\Rightarrow C=\frac{1}{5}.\left(\frac{5}{5.10}+\frac{5}{10.15}+\frac{5}{15.20}+....+\frac{5}{95.100}\right)\)
\(=\frac{1}{5}.\left(\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+....+\frac{1}{95}-\frac{1}{100}\right)\)
\(=\frac{1}{5}.\left(\frac{1}{5}-\frac{1}{100}\right)=\frac{1}{5}.\frac{19}{100}=\frac{19}{500}\)
\(\Rightarrow1-C=1-\frac{19}{500}=\frac{481}{500}\)
Chúc bạn học tốt
Bài 1: \(1-\frac{1}{5.10}-\frac{1}{10.15}-\frac{1}{15.20}-...-\frac{1}{95.100}\)
ta có B = 1- 1/5.10 - 1/10.15 -.......- 1/95 .100
=> 5B = 5 -( 5/5.10+5/10.15 +....+ 5/95.100
= > 5B = 5 - ( 1/5 -1/100 )
=> 5B= 481/100
=> B = 481/500
1)cho các số thực dương 2a+3b+4c=2015 chứng minh \(\frac{3b+4c+2020}{1+2a}+\frac{2a+4c+2020}{1+3b}+\frac{2a+3b+2020}{1+4c}\ge15\)
2)cho a,b là các số dương thõa mãn (a+b)^3+4ab<=12
chứng minh rằng \(\frac{1}{1+a}+\frac{1}{1+b}+2015ab\le2016\)
hai bài này riêng biệt hết nha ko liên quan tới nhau
giúp vs !!!!!
Tìm x
\(\frac{x+1}{2015}+\frac{x+2}{2014}+\frac{x+3}{2013}+\frac{x+4}{2012}+\frac{x+2020}{4}=0\)
trình bày cách làm nữa nha