Phân tích đa thức thành nhân tử :
(x+1)(x+5)(x+2)(x+4)-4
Bài 1 : Phân tích các đa thức sau thành nhân tử :
1) 15x + 15y 2) 8x - 12y
3) xy - x 4) 4x^2- 6x
Bài 2 : Phân tích các đa thức sau thành nhân tử :
1) 2(x + y) - 5a(x + y) 2) a^2(x - 5) - 3(x - 5)
3) 4x(a - b) + 6xy(a - b) 4) 3x(x - 1) + 5(x -1)
Bài 3 : Tính giá trị của biểu thức :
1) A = 13.87 + 13.12 + 13
2) B = (x - 3).2x + (x - 3).y tại x = 13 và y = 4
Bài 4 : Tìm x :
1) x(x - 5) - 2(x - 5) = 0 2) 3x(x - 4) - x + 4 = 0
3) x(x - 7) - 2(7 - x) = 0 4) 2x(2x + 3) - 2x - 3 = 0
\(1,\\ 1,=15\left(x+y\right)\\ 2,=4\left(2x-3y\right)\\ 3,=x\left(y-1\right)\\ 4,=2x\left(2x-3\right)\\ 2,\\ 1,=\left(x+y\right)\left(2-5a\right)\\ 2,=\left(x-5\right)\left(a^2-3\right)\\ 3,=\left(a-b\right)\left(4x+6xy\right)=2x\left(2+3y\right)\left(a-b\right)\\ 4,=\left(x-1\right)\left(3x+5\right)\\ 3,\\ A=13\left(87+12+1\right)=13\cdot100=1300\\ B=\left(x-3\right)\left(2x+y\right)=\left(13-3\right)\left(26+4\right)=10\cdot30=300\\ 4,\\ 1,\Rightarrow\left(x-5\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\\ 2,\Rightarrow\left(x-7\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=-2\end{matrix}\right.\\ 3,\Rightarrow\left(3x-1\right)\left(x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=4\end{matrix}\right.\\ 4,\Rightarrow\left(2x+3\right)\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
phân tích đa thức thành nhân tử bằng phương pháp thêm bớt hạng tử để xuất hiện hằng đăng thức
x^4 + x^2 +1
phân tích đa thức thành nhân tử bằng phương pháp thêm hạng tử để xuất hiện thừa số chung
x^5 - x^4 - 1
x - x^10 + x^5 + 1
x^4+x^2+1 = (x^4+2x^2+1)-x^2 = (x^2+1)^2-x^2 = (x^2-x+1).(x^2+x+1)
k mk nha
phân tích đa thức thành nhân tử bằng phương pháp thêm bớt hạng tử để xuất hiện hằng đăng thức
x^4 + x^2 +1
phân tích đa thức thành nhân tử bằng phương pháp thêm hạng tử để xuất hiện thừa số chung
x^5 - x^4 - 1
x - x^10 + x^5 + 1
x5-x4-1=x5-x3-x2-x4+x2+x+x3-x-1
=x2.(x3-x-1)-x.(x3-x-1)+(x3-x-1)
=(x3-x-1)(x2-x+1)
x^4+x^2+1 = (x^4+2x^2+1)-x^2 = (x^2+1)^2-x^2 = (x^2-x+1).(x^2+x+1)
k mk nha
Bài 1: Phân tích đa thức thành nhân tử
a)4(2-x)\(^2\)+xy-2y b)3a\(^2\)x-3a\(^2\)y+abx-aby
Bài 2: Phân tích đa thức thành nhân tử
a)x(x-y)\(^3\)-y(y-x)\(^2\)-y\(^2\)(x-y) b)2ax\(^3\)+6ax\(^2\)+6ax+18a
Bài 3: Phân tích đa thức thành nhân tử
a)x\(^2\)y-xy\(^2\)-3x+3y b)3ax\(^2\)+3bx\(^2\)+bx+5a+5b
Bài 4: Tính giá trị biểu thức
A=a(b+3)-b(3+b) tại a=2003 và b=1997
Bài 5: Tìm x, biết
a)8x(x-2017)-2x+4034=0 b)x\(^2\)(x-1)+16(1-x)=0
\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)
Phân tích đa thức thành nhân tử :( x - 1) ( x - 2 ) (x +4) (x + 5 ) - 72
(x-1)(x-2)(x+4)(x+5)-72=[(x-1)(x+4)][x-2)(x+5)]-72=(x^2+3x-4)(x^2+3x-10)-72
Đặt x^2+3x-4=t nên x^2+3x-10=t-6. Thay vào (*) ta được :
(x-1)(x-2)(x+4)(x+5)=t.(t-6)-72=t^2-6t-72=t^2-6t+9-81=(t-3)^2-9^2=(t-3-9)(t-3+9)=(t-12)(t+6)=(x^2+3x-16)(x^2+3x+2)
phân tích đa thức thành nhân tử (x-2)(x-3)(x-4)(x-5)+1
Ta có: \(\left(x-2\right)\left(x-3\right)\left(x-4\right)\left(x-5\right)+1\)
\(=\left[\left(x-2\right)\left(x-5\right)\right]\cdot\left[\left(x-3\right)\left(x-4\right)\right]+1\)
\(=\left(x^2-7x+10\right)\cdot\left(x^2-7x+12\right)+1\)
\(=\left[\left(x^2-7x+11\right)-1\right]\cdot\left[\left(x^2-7x+11\right)+1\right]\)
\(=\left(x^2-7x+11\right)^2-1+1\)
\(=\left(x^2-7x+11\right)^2\)
\(\left(x-2\right)\left(x-3\right)\left(x-4\right)\left(x-5\right)+1\)
\(=\left(x-2\right)\left(x-5\right)\left(x-4\right)\left(x-3\right)+1\)
\(=\left(x^2-7x+10\right)\left(x^2-7x+12\right)+1\)
Đặt t = \(x^2-7x\)
\(t\left(t+2\right)+1\)
\(=t^2+2t+1\)
\(=\left(t+1\right)^2\)
\(=\left(x^2-7x+1\right)^2\)
\(\left(x-2\right)\left(x-3\right)\left(x-4\right)\left(x-5\right)+1\)
\(=\left(x-2\right)\left(x-5\right)\left(x-3\right)\left(x-4\right)+1\)
\(=\left(x^2-7x+10\right)\left(x^2-7x+12\right)+1\)(*)
Đặt \(a=x^2-7x+10\)
(*)=\(a\left(a+2\right)+1\)
\(=a^2+2a+1\)
\(=\left(a+1\right)^2\)
\(=\left(x^2-7x+11\right)^2\)
Phân tích đa thức thành nhân tử a) x^4 + 4y^2 b) x^5+x+1
a) x4 + 4y2=(x2)2+(2y)2=(x2)2+4x2y2+(2y)2-4x2y2=(x2+y2)2-(2xy)2=(x2+y2-2xy)(x2+y2+2xy)
b) x^5+x+1=x5−x4+x2+x4−x2+x+x3−x2+1=(x5−x4+x2)+(x4−x2+x)+(x3−x2+1)
= x2(x3-x2+1)+x(x3-x+1)+(x3−x2+1)
= (x2+x+1)(x3+x2+1)
câu 1:tính
a) 4x2-9y2 b) ( 3x+y)3
câu 2 phân tích đa thức thành nhân tử
b) 4x2-12x+9
câu 3:tìm x,biết:6x3+16x2-150x-400=0
câu 4:phân tích đa thức thành nhân tử:D=(x+1)(x+3)(x+5)(x+7)+15
phân tích đa thức thành nhân tử (x-1)(x-2)(x+4)(x+5)-112
\(\left(x-1\right)\left(x+4\right)\left(x-2\right)\left(x+5\right)-112\)
\(=\left(x^2+3x-4\right)\left(x^2+3x-10\right)-112\)
\(=\left(x^2+3x-7+3\right)\left(x^2+3x-7-3\right)-112\)
\(=\left(x^2+3x-7\right)^2-3^2-112\)
\(=\left(x^2+3x-7\right)^2-11^2\)
\(=\left(x^2+3x-7+11\right)\left(x^2+3x-7-11\right)\)
\(=\left(x^2+3x+4\right)\left(x^2+3x-18\right)=0\)
\(=\left(x^2+3x+4\right)\left(x+6\right)\left(x-3\right)\)