Tìm gtnn của A(x) =(x-1)(x-3)(x-4)(x-6)+ 10
Tìm GTNN của A=(x-1)(x-3)(x-4)(x-6)+10
Tìm GTNN của
A(x) = ( x-1 )( x-3 )( x-4 )( x-6 )+10
A(x) = ( x - 1 )( x - 3 )( x - 4 )( x - 6 ) + 10
= [ ( x - 1 )( x - 6 ) ][ ( x - 3 )( x - 4 ) ] + 10
= [ x2 - 7x + 6 ][ x2 - 7x + 12 ] + 10
Đặt x2 - 7x + 6 = t
<=> A(x) = t( t + 6 ) + 10
= t2 + 6t + 10
= ( t2 + 6t + 9 ) + 1
= ( t + 3 )2 + 1
\(\left(t+3\right)^2\ge0\forall t\Rightarrow\left(t+3\right)^2+1\ge1\)
Đẳng thức xảy ra <=> t + 3 = 0
<=> x2 - 7x + 6 + 3 = 0
<=> x2 - 7x + 9 = 0 (*)
\(\Delta=b^2-4ac=\left(-7\right)^2-4\cdot1\cdot9=49-36=13\)( không còn cách nào khác T^T )
\(\Delta>0\)nên (*) có hai nghiệm phân biệt
\(\hept{\begin{cases}x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{7+\sqrt{13}}{2}\\x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{7-\sqrt{13}}{2}\end{cases}}\)
Vậy MinA = 1 <=> \(\orbr{\begin{cases}x=\frac{7+\sqrt{13}}{2}\\x=\frac{7-\sqrt{13}}{2}\end{cases}}\)
Sai chỗ nào bỏ qua chỗ đấy nhé T^T
1. tìm GTNN của A= x(x+2)(x+4)(x+6)+8
2. tìm GTLN của B=5+(1-x)(x+2)(x+3)(x+6)3
3.tìm GTNN của C=(x+3)4 + (x-7)4
4. Cho x>0. Tìm GTNN của P=\(\dfrac{4x^2+1}{2x}\)
1.
$x(x+2)(x+4)(x+6)+8$
$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$
$=a(a+8)+8$ (đặt $x^2+6x=a$)
$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$
Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$
2.
$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$
$=5-(x^2+5x-6)(x^2+5x+6)$
$=5-[(x^2+5x)^2-6^2]$
$=41-(x^2+5x)^2\leq 41$
Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$
3.
Đặt $x+3=a; 7-x=b$ thì $a+b=10$
$C=a^4+b^4$
Áp dụng BĐT Bunhiacopxky:
$(a^4+b^4)(1+1)\geq (a^2+b^2)^2$
$\Rightarrow C\geq \frac{(a^2+b^2)^2}{2}$
$(a^2+b^2)(1+1)\geq (a+b)^2=100$
$\Rightarrow a^2+b^2\geq 50$
$\Rightarrow C\geq \frac{50^2}{2}=1250$
Vậy $C_{\min}=1250$
Giá trị này đạt tại $a=b=5\Leftrightarrow x=2$
Tìm GTLN - GTNN của các biểu thức ?
* bài 1: Tìm GTNN:
a) A= (x - 5)² + (x² - 10x)² - 24
b) B= (x - 7)² + (x + 5)² - 3
c) C= 5x² - 6x +1
d) D= 16x^4 + 8x² - 9
e) A= (x + 1)(x - 2)(x - 3)(x - 6)
f) B= (x - 2)(x - 4)(x² - 6x + 6)
g) C= x^4 - 8x³ + 24x² - 8x + 25
h) D= x^4 + 2x³ + 2x² + 2x - 2
i) A= x² + 4xy + 4y² - 6x – 12y +4
k) B= 10x² + 6xy + 9y² - 12x +15
l) C= 5x² - 4xy + 2y² - 8x – 16y +83
m) A= (x - 5)^4 + (x - 7)^4 – 10(x - 5)²(x - 7)² + 9
* Bài 2: Tìm GTLN:
a) M= -7x² + 4x -12
b) N= -16x² - 3x +14
c) M= -x^4 + 4x³ - 7x² + 12x -5
d) N= -(x² + x – 2) (x² +9x+18) +27
* Bài 3:
1) Cho x - 3y = 1. Tìm GTNN của M= x² + 4y²
2) Cho 4x - y = 5. Tìm GTNN của 3x²+2y²
3) Cho a + 2b = 2. Tìm GTNN của a³ + 8b³
* Bài 4: Tìm GTLN và GTNN của các biểu thức:
1) A = (3 - 4x)/(x² + 1)
2) B= (8x + 3)/(4x² + 1)
3) C= (2x+1)/(x²+2)
Tìm GTNN ( tìm min) của
1.A=3./x/ -2
2.B=/x-8/ + \(\frac{3}{4}\)
3.(x-6)^10 +/x-y/+9
1) Vì \(\left|x\right|\ge0\left(\forall x\right)\Rightarrow3.\left|x\right|\ge0\Rightarrow A=3.\left|x\right|-2=3.\left|x\right|+\left(-2\right)\ge-2\)
Dấu bằng xảy ra khi: |x| = 0 <=> x = 0
Vậy Amin = -2 khi và chỉ khi x = 0
2) Vì \(\left|x-8\right|\ge0\left(\forall x\right)\Rightarrow B=\left|x-8\right|+\frac{3}{4}\ge\frac{3}{4}\)
Dấu "=" xảy ra <=> |x-8| = 0 <=>x - 8 = 0 <=> x = 8
Vậy Bmin = 3/4 khi và chỉ khi x = 8
3) Vì \(\left(x-6\right)^{10}\ge0\left(\forall x\right);\left|x-y\right|\ge0\left(\forall x;y\right)\)
\(\Rightarrow\left(x-6\right)^{10}+\left|x-y\right|+9\ge9\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-6\right)^{10}=0\\\left|x-y\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-6=0\\x-y=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=6\\x=y\end{cases}\Leftrightarrow}x=y=6}\)
Vậy GTNN của biểu thức = 9 khi và chỉ khi x = y = 6
tìm GTNN của biểu thức:a)A= 1,5+/3,4-x/ b)B= -3/4 +/5+x/ c) C= -1/ /2x+6/+1
tìm GTLN của biểu thức:a) A=5,5-/2x-1,5/ b)B=10-4./x-2/ c) A=x-/x/
Bài 1: Tìm x, biết:
a) 4.(x+1)^2+(2x-1)^2-8(x-1)(x+1)=11
b) (x-2)^3-x(x+2)(x-2)+6x(x-3)=0
c) (x-1)(x^2+x+1)-x(x-3)(x+3)=6
Bài 2: Tìm GTNN của:
a) A= x^2-2x+10
b) B= x^2-5x-7
c) C= 3x^2+3x-5
\(A=x^2-2x+10\)
\(A=\left(x^2-2x+1\right)+9\)
\(A=\left(x-1\right)^2+9\)
Mà \(\left(x-1\right)^2\ge0\)
\(\Rightarrow A\ge9\)
Dấu "=" xảy ra khi :
\(x-1=0\Leftrightarrow x=1\)
Vậy Min A = 9 khi x = 1
\(B=x^2-5x-7\)
\(B=\left(x^2-5x+\frac{25}{4}\right)-\frac{53}{4}\)
\(B=\left(x-\frac{5}{2}\right)^2-\frac{53}{4}\)
Mà \(\left(x-\frac{5}{2}\right)^2\ge0\)
\(\Rightarrow B\ge-\frac{53}{4}\)
Dấu "=" xảy ra khi :
\(x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\)
Vậy \(B_{Min}=-\frac{53}{4}\Leftrightarrow x=\frac{5}{2}\)
\(C=3x^2+3x-5\)
\(3C=9x^2+9x-15\)
\(3C=\left(9x^2+9x+\frac{9}{4}\right)-\frac{69}{4}\)
\(3C=\left(3x+\frac{3}{2}\right)^2-\frac{69}{4}\)
Mà \(\left(3x+\frac{3}{2}\right)^2\ge0\)
\(\Rightarrow3C\ge-\frac{69}{4}\)
\(\Leftrightarrow C\ge-\frac{23}{4}\)
Dấu "=" xảy ra khi :
\(3x+\frac{3}{2}=0\Leftrightarrow x=-\frac{1}{2}\)
Vậy ...
Bài 6: a) Tìm GTNN của biểu thức sau:
1) A= x^2 + 3x +7
2) B= (x-2)(x-5)(x^2 -7x-10)
b) Tìm GTLN của biểu thức:
1) A= 11-10x-x^2
2) B=|x-4|( 2-|x-4| )
Có ai biết giải bài này ko , giúp mình ik !
\(6,\\ a,\\ 1,A=x^2+3x+7=\left(x+\dfrac{3}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}\)
Dấu \("="\Leftrightarrow x=-\dfrac{3}{2}\)
\(2,B=\left(x-2\right)\left(x-5\right)\left(x^2-7x+10\right)=\left(x-2\right)^2\left(x-5\right)^2\ge0\)
Dấu \("="\Leftrightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)
\(b,\\ 1,A=11-10x-x^2=-\left(x+5\right)^2+36\le36\)
Dấu \("="\Leftrightarrow x=-5\)
ChoA=(√x +10/x-4+5/√x-2):6/x+2√x
Tìm gtnn của A khi x>2