Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bùi Thanh Tâm
Xem chi tiết
Tiều Phu
Xem chi tiết
Akai Haruma
31 tháng 10 2018 lúc 21:02

Lời giải:

\(a^3+b^3=3ab-1\)

\(\Leftrightarrow a^3+b^3-3ab+1=0\)

\(\Leftrightarrow (a+b)^3-3ab(a+b)-3ab+1=0\)

\(\Leftrightarrow (a+b)^3+1-3ab(a+b+1)=0\)

\(\Leftrightarrow (a+b+1)[(a+b)^2-(a+b)+1]-3ab(a+b+1)=0\)

\(\Leftrightarrow (a+b+1)(a^2+b^2+1-ab-a-b)=0\)

Vì $a,b>0$ nên $a+b+1\neq 0$

Do đó:

\(a^2+b^2+1-a-b-ab=0\)

\(\Leftrightarrow \frac{(a-b)^2+(a-1)^2+(b-1)^2}{2}=0\)

\(\Rightarrow a=b=1\)

Do đó: \(a^{2018}+b^{2019}=1+1=2\)

Ta có đpcm.

Trung Nguyễn Thành
Xem chi tiết
ST
3 tháng 11 2018 lúc 22:21

Sửa đề cm a2018+b2018=2

Ta có:\(a^3+b^3=3ab-1\)

\(\Leftrightarrow a^3+b^3+1-3ab=0\)

\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+1-3ab=0\)

\(\Leftrightarrow\left(a+b+1\right)\left[\left(a+b\right)^2-\left(a+b\right)+1\right]-3ab\left(a+b+1\right)=0\)

\(\Leftrightarrow\left(a+b+1\right)\left(a^2+2ab+b^2-a-b+1-3ab\right)=0\)

\(\Leftrightarrow\left(a+b+1\right)\left(a^2+ab+b^2-a-b+1\right)=0\)

Vì a,b > 0 => a + b + 1 > 0

=>\(a^2+ab+b^2-a-b+1=0\)

=>2a2+2ab+2b2-2a-2b+2=0

=>(a2+2ab+b2)+(a2-2a+1)+(b2-2b+1)=0

=>(a+b)2+(a-1)2+(b-1)2=0

Mà \(\hept{\begin{cases}\left(a+b\right)^2\ge0\\\left(a-1\right)^2\ge0\\\left(b-1\right)^2\ge0\end{cases}}\Rightarrow VT\ge0\)

=>\(\hept{\begin{cases}a+b=0\\a-1=0\\b-1=0\end{cases}}\)=> a=b=1

=>\(a^{2018}+b^{2018}=1+1=2\)

Dương Lê Minh
Xem chi tiết
Pham Van Hung
1 tháng 11 2018 lúc 22:24

     \(a^3+b^3=3ab-1\)

\(\Rightarrow a^3+b^3+1-3ab=0\)

\(\Rightarrow\left(a+b\right)^3+1-3ab\left(a+b\right)-3ab=0\)

\(\Rightarrow\left(a+b+1\right)\left(a^2+2ab+b^2-a-b+1\right)-3ab\left(a+b\right)=0\)

\(\Rightarrow\left(a+b+1\right)\left(a^2-ab+b^2-a-b+1\right)=0\)

Mà \(a,b>0\Rightarrow a+b+1>0\)

\(\Rightarrow a^2-ab+b^2-a-b+1=0\)

\(\Rightarrow2a^2-2ab+2b^2-2a-2b+2=0\)

\(\Rightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2=0\)

\(\Rightarrow a=b=1\Rightarrow a^{2018}+b^{2019}=1+1=2\)

Đỗ Tố Quyên
Xem chi tiết
Rau
21 tháng 6 2017 lúc 9:33

m.n/(m^2+n^2 ) và m.n/2018
- Đặt (m,n)=d => m= da;n=db ; (a,b)=1
=> d^2(a^2+b^2)/(d^2(ab))  = (a^2+b^2)/(ab) => b/a ; a/b => a=b=> m=n=> ( 2n^2+2018)/n^2 =2 + 2018/n^2 => n^2/2018
=> m=n=1 ; lẻ và nguyên tố cùng nhau. vì d=1

Ben 10
23 tháng 8 2017 lúc 22:01

Vẽ SH _I_ (ABCD) => H là trung điểm AD => CD _I_ (SAD) 
Vẽ HK _I_ SD ( K thuộc SD) => CD _I_ HK => HK _I_ (SCD) 
Vẽ AE _I_ SD ( E thuộc SD). 
Ta có S(ABCD) = 2a² => SH = 3V(S.ABCD)/S(ABCD) = 3(4a³/3)/(2a²) = 2a 
1/HK² = 1/SH² + 1/DH² = 1/4a² + 1/(a²/2) = 9/4a² => HK = 2a/3 
Do AB//CD => AB//(SCD) => khoảng cách từ B đến (SCD) = khoảng cách từ A đến (SCD) = AE = 2HK = 4a/3

Chờ thị trấn
Xem chi tiết
Ngọc Hạnh Nguyễn
Xem chi tiết
Thắng Nguyễn
7 tháng 3 2018 lúc 18:23

\(\frac{a^4+b^4}{a^3+b^3}+\frac{b^4+c^4}{b^3+c^3}+\frac{c^4+a^4}{c^3+a^3}\ge2018\)

\(\Leftrightarrow\frac{a^4+b^4}{a^3+b^3}+\frac{b^4+c^4}{b^3+c^3}+\frac{c^4+a^4}{c^3+a^3}\ge a+b+c\)

\(\LeftrightarrowΣ_{cyc}\frac{a^3\left(a-c\right)+b^3\left(b-c\right)}{a^3+b^3}\ge0\)

\(\LeftrightarrowΣ_{cyc}\left(a-b\right)\left(\frac{a^3}{c^3+a^3}-\frac{b^3}{b^3+c^3}\right)\ge0\)

\(\LeftrightarrowΣ_{cyc}\left(\left(a-b\right)^2\frac{c^3\left(a^2+ab+b^2\right)}{\left(a+c\right)\left(a^2-ac+c^2\right)\left(b+c\right)\left(b^2-bc+c^2\right)}\right)\ge0\)

BĐT cuối cùng liếc qua cũng biết thừa đúng :) nên ta có ĐPCM

Dấu "=" <=> a=b=c 

Ủng hô va` kb với mình nhé ^^

alibaba nguyễn
7 tháng 3 2018 lúc 13:23

Bài này làm dài lắm

Tăng Vĩnh Hà
Xem chi tiết
Aphrodite
Xem chi tiết