Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Anh Quynh
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 10 2022 lúc 10:59

a: Gọi M là trung điểm của CD

=>ΔCED nội tiếp đường tròn đường kính CD có M là tâm

=>MD=ME

=>ΔMDE cân tại M

=>góc MED=góc MDE

Xét ΔABD có 

AH vừa là đường cao, vừa là đường trung tuyến

nên ΔABD cân tại A

=>AH là phân giác của góc BAD

=>góc BAH=góc DAH

Xét tứ giác AHDE có

góc AHD+góc AED=180 độ

nên AHDE là tứ giác nội tiếp

=>góc DAH=góc DEH

=>góc DEH=góc BAH=góc C

=>góc MEH=góc C+góc CDE=90 độ

=>HE là tiếp tuyến của (M)

b: \(HB=DH=\dfrac{AB^2}{BC}=\dfrac{64}{17}\left(cm\right)\)

CD=BC-2x64/17=161/17(cm)

EM=161/17:2=161/34(cm)

MH=MD+DH=BC/2=8,5cm

=>\(HE=\sqrt{MH^2-EM^2}=\dfrac{120}{17}\left(cm\right)\)

Anh Quynh
Xem chi tiết

a, Gọi O là trung điểm CD

Từ giả thiết suy ra tam giác ABD và tam giác ODE đều

=> DE = DH = DO = 1 4 BC

=>  H E O ^ = 90 0

=> HE là tiếp tuyến của đường tròn đường kính CD

b, HE = 4 3

Nguyễn Lê Phước Thịnh
8 tháng 10 2022 lúc 10:59

a: Gọi M là trung điểm của CD

=>ΔCED nội tiếp đường tròn đường kính CD có M là tâm

=>MD=ME

=>ΔMDE cân tại M

=>góc MED=góc MDE

Xét ΔABD có 

AH vừa là đường cao, vừa là đường trung tuyến

nên ΔABD cân tại A

=>AH là phân giác của góc BAD

=>góc BAH=góc DAH

Xét tứ giác AHDE có

góc AHD+góc AED=180 độ

nên AHDE là tứ giác nội tiếp

=>góc DAH=góc DEH

=>góc DEH=góc BAH=góc C

=>góc MEH=góc C+góc CDE=90 độ

=>HE là tiếp tuyến của (M)

b: \(HB=DH=\dfrac{AB^2}{BC}=\dfrac{64}{17}\left(cm\right)\)

CD=BC-2x64/17=161/17(cm)

EM=161/17:2=161/34(cm)

MH=MD+DH=BC/2=8,5cm

=>\(HE=\sqrt{MH^2-EM^2}=\dfrac{120}{17}\left(cm\right)\)

Anh Quynh
Xem chi tiết
Anh Quynh
Xem chi tiết
Anh Quynh
Xem chi tiết
Anh Quynh
Xem chi tiết
Anh Quynh
Xem chi tiết
Anh Quynh
Xem chi tiết
Denni
24 tháng 9 2021 lúc 18:40

undefined

Anh Quynh
Xem chi tiết
Denni
24 tháng 9 2021 lúc 18:41

undefined

Zero Two
Xem chi tiết
Buồn vì chưa có điểm sp
23 tháng 9 2021 lúc 11:15

a, Gọi O là trung điểm CD

Từ giả thiết suy ra tam giác ABD và tam giác ODE đều

=> DE = DH = DO = 1 4 BC

=>  H E O ^ = 90 0

=> HE là tiếp tuyến của đường tròn đường kính CD

b, HE = 4 3

Khách vãng lai đã xóa

a, Gọi O là trung điểm CD

Từ giả thiết suy ra tam giác ABD và tam giác ODE đều

=> DE = DH = DO = 1 4 BC

=>  H E O ^ = 90 0

=> HE là tiếp tuyến của đường tròn đường kính CD

Khách vãng lai đã xóa