tìm giá trị nguyên dương x và y sao cho \(\frac{1}{x}+\frac{1}{y}=\frac{1}{5}\)
Tìm giá trị nguyên dương của x và y sao cho \(\frac{1}{x}+\frac{1}{y}=\frac{1}{5}\)
Tìm giá trị nguyên dương của x và y , sao cho : \(\frac{1}{x}+\frac{1}{y}=\frac{1}{5}\)
Lời giải
Không mất tính tổng quát,giả sử \(x\ge y\)
Suy ra \(\frac{1}{5}=\frac{1}{x}+\frac{1}{y}\le\frac{1}{y}+\frac{1}{y}=\frac{2}{y}\)
Suy ra \(1\le y\le10\)..Thay vào từng giá trị của y là ok! (Chú ý đk x,y nguyên)
Cách khác:(đưa về pt ước số)
Quy đồng lên,ta có: \(\frac{x+y}{xy}=\frac{1}{5}\Rightarrow5\left(x+y\right)=xy\)
\(\Rightarrow xy-5x-5y=0\)
\(\Leftrightarrow xy-5x-5y+5=5\) (thêm 5 vào mỗi vế)
\(\Leftrightarrow\left(x-5\right)\left(y-5\right)=5\)
Lập bảng xét ước=) cái này quá quen thuộc rồi=)
Suy ra \(\frac{x+y}{xy}\)=\(\frac{1}{5}\)
suy ra 5x+5y=xy
suy ra xy-5x-5y=0
suy ra 5x-xy+5y+25=25
x.(y-5)-5.(y-5)=25
suy ra (x-5).(y-5) =25
suy ra x-5;y-5 thuộc Ư(25)
Lập bảng tính
suy ra
Tìm tất cả các giá trị nguyên dương của x và y sao cho:
\(\frac{1}{x}+\frac{1}{y}=\frac{1}{5}\)
\(\frac{1}{x}+\frac{1}{y}=\frac{1}{5}\Leftrightarrow\frac{x+y}{xy}=\frac{1}{5}\Leftrightarrow5x+5y=xy\)
\(\Leftrightarrow xy-5x-5y=0\Leftrightarrow x\left(y-5\right)-5\left(y-5\right)-25=0\)
\(\Leftrightarrow\left(x-5\right)\left(y-5\right)=25\)
Phân tích 25 = 1.25 = 5.5 = .....
Xét từng cặp số cho mỗi trường hợp , ví dụ : \(\hept{\begin{cases}x-5=5\\y-5=5\end{cases}\Leftrightarrow}\hept{\begin{cases}x=10\\y=10\end{cases}}\)
Các trường hợp còn lại làm tương tự :)
mk có một cách khác các bạn xem nhé:
ta có:
\(\frac{1}{x}+\frac{1}{y}=\frac{1}{5}\left(x,y\ne0\right)\Leftrightarrow\frac{1}{x}=\frac{1}{5}-\frac{1}{y}\Leftrightarrow\frac{1}{x}=\frac{y-5}{5y}\)
\(\Leftrightarrow5y=x\left(y-5\right)\Rightarrow5y=xy-5x\Leftrightarrow xy-5x=5y\)
\(\Leftrightarrow xy=5x+5y\Rightarrow xy=5\left(x+y\right)\)
Nếu x=y ta có:
\(xy=5\left(x+y\right)\Leftrightarrow x^2=5\times2x\Leftrightarrow x^2-10x=0\)
\(\Leftrightarrow x\left(x-10\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\x-10=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\x=10\end{cases}}\)( loại th x=0 vì \(x,y\ne0\))
nên x=10 mà x=y nên y = 10
Nếu \(x\ne y\)thì
\(xy=5\left(x+y\right)\)(vô lí) vớ mọi x,y
vậy x=y=10
Tìm giá trị nguyên dương của 2 số x,y sao cho \(\frac{1}{x}+\frac{1}{y}=\frac{1}{5}\)
Tìm x,y,z nguyên dương sao cho
\(A=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)
nhận giá trị nguyên
Ez còn nhờ :
Để \(A=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\) nghuyên \(\Leftrightarrow\hept{\begin{cases}1⋮a\text{ };\text{ }1⋮b\text{ };\text{ }1⋮c\\1⋮ab\text{ };\text{ }1⋮bc\text{ };\text{ }1⋮ac\end{cases}}\)
\(\Rightarrow\left(a;b;c\right)\inƯ\left(1\right)=\left\{\pm1\right\}\)Mà a;b;c nguyên dương \(\Rightarrow\left(a;b;c\right)=\left(1;1;1\right)\)
Vậy \(\left(a;b;c\right)=\left(1;1;1\right)\)
1. Tìm những giá trị nguyên dương của x thỏa mãn:
\(\frac{1}{3}< \frac{9}{x}< \frac{1}{2}\)
2. Tìm các số nguyên x để các phân số sau có giá trị là một số nguyên và tính giá trị ấy:
\(A=\frac{x+5}{x+1}\)
3. Tìm \(x,y\in Z\), biết: ( x + 4 )( y + 3 ) = 3
1/ Ta có \(\frac{1}{3}< \frac{9}{x}< \frac{1}{2}\)
\(\Rightarrow\frac{9}{27}< \frac{9}{x}< \frac{9}{18}\)
\(\Rightarrow27>x>18\)
Vì \(x\in Z\Rightarrow x\in\left\{19,20,...,26\right\}\)
Vậy....
\(P=\frac{x+\frac{1}{y}}{\frac{1}{y}+x}\)
a) Rút gọn P
b) Tìm các cặp giá trị nguyên dương x và y với x+y <= 50 để P có giá trị là 8
a, Tìm giá trị nguyên dương của x và y, sao cho:
\(\frac{1}{x}+\frac{1}{y}=\frac{1}{5}\)
b, Tìm x, y thuộc N biết:
36-y2= 8( x- 2010)2
Các bn cố gắng giúp mk trong hôm nay nha, mai mk mà ko nộp thì thầy phạt chết.
thanks các bn nhìu
Cho \(P=\frac{1}{2}-\frac{1}{x}-\frac{1}{x-y}-\frac{1}{x+y+z}\)
Tìm các giá trị nguyên dương của x, y, z để P đạt GTNN.