giải hpt sau:
\(\left\{{}\begin{matrix}x^4+y^4=97\\xy\left(x^2+y^2\right)=78\end{matrix}\right.\)
Giải hệ phương trình:
a) \(\left\{{}\begin{matrix}\left(x+1\right)\left(y+1\right)=10\\\left(x+y\right)\left(xy+1\right)=1\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x^4+y^4=97\\xy\left(x^2+y^2\right)=78\end{matrix}\right.\)
a/ \(\left\{{}\begin{matrix}xy+1+x+y=10\\\left(x+y\right)\left(xy+1\right)=1\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+y=a\\xy+1=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=10\\ab=1\end{matrix}\right.\)
Theo Viet đảo, a và b là nghiệm:
\(t^2-10t+1=0\) \(\Rightarrow\left[{}\begin{matrix}t=5+2\sqrt{6}\\t=5-2\sqrt{6}\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x+y=5+2\sqrt{6}\\xy=4-2\sqrt{6}\end{matrix}\right.\)
Theo Viet đảo, x và y là nghiệm:
\(t^2-\left(5+2\sqrt{6}\right)t+4-2\sqrt{6}=0\) (bấm máy, số xấu quá)
TH2: \(\left\{{}\begin{matrix}x+y=5-2\sqrt{6}\\xy=4+2\sqrt{6}\end{matrix}\right.\)
Ta có \(\left(5-2\sqrt{6}\right)^2-4\left(4+2\sqrt{6}\right)=33-28\sqrt{6}< 0\) nên vô nghiệm
b/ \(\left\{{}\begin{matrix}x^4+y^4=97\\xy\left(x^2+y^2\right)=78\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2+y^2\right)^2-2x^2y^2=97\\xy\left(x^2+y^2\right)=78\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x^2+y^2=a>0\\xy=b\end{matrix}\right.\) với \(a\ge2b\) hệ trở thành:
\(\left\{{}\begin{matrix}a^2-2b^2=97\\ab=78\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a^2-2b^2=97\\b=\frac{78}{a}\end{matrix}\right.\)
\(\Rightarrow a^2-2\left(\frac{78}{a}\right)^2=97\)
\(\Leftrightarrow a^4-97a^2-12168=0\Rightarrow\left[{}\begin{matrix}a^2=169\\a^2=-72\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}a=13\Rightarrow b=6\\a=-13< 0\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x^2+y^2=13\\xy=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x^2+y^2=13\\y=\frac{6}{x}\end{matrix}\right.\)
\(\Rightarrow x^2+\frac{36}{x^2}=13\Leftrightarrow x^4-13x^2+36=0\) \(\Rightarrow\left[{}\begin{matrix}x^2=9\\x^2=4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\Rightarrow y=2\\x=-3\Rightarrow y=-2\\x=2\Rightarrow y=3\\x=-2\Rightarrow y=-3\end{matrix}\right.\)
giải hpt:
1, \(\left\{{}\begin{matrix}2\left(x-1\right)y^2+x+y=4\\\left(y-3\right)x^2+y=x+2\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}x^2+y^2=2x+4\\2x+y+xy=4\end{matrix}\right.\)
giải hpt:
1, \(\left\{{}\begin{matrix}x^2y^2+4=2y^2\\\left(xy+2\right)\left(y-x\right)=x^3y^3\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}x^2+y^2-4xy\left(\dfrac{2}{x-y}-1\right)=4\left(4+xy\right)\\\sqrt{x-y}+3\sqrt{2y^2-y+1}=2y^2-x+3\end{matrix}\right.\)
Giải hệ phương trình
\(\left\{{}\begin{matrix}x^2+y^2+xy=13\\x^4+y^4+x^2y^2=91\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2-xy=13\\\left(x^2+y^2\right)^2-\left(xy\right)^2=91\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2=13+xy\\\left[\left(x+y\right)^2-2xy\right]^2-\left(xy\right)^2=91\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2-xy=13\\\left(13-xy\right)^2-\left(xy\right)^2=91\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=3\\\left(x+y\right)^2=16\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=4\\xy=3\end{matrix}\right.\) hoặc x+y = -4
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+y=4\\xy=3\end{matrix}\right.\\\left\{{}\begin{matrix}x+y=-4\\xy=3\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=-3\\y=-1\end{matrix}\right.\end{matrix}\right.\)hoặc \(\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)hoặc \(\left\{{}\begin{matrix}x=-1\\y=-3\end{matrix}\right.\)
Mọi người có thể giải thích từ dấu tương đương thứ 3 xuống 4. tại sao lại như vậy k?
giải hpt: \(\left\{{}\begin{matrix}xy+x+y=0\\xy^2-4=x^2\end{matrix}\right.\)
Ta thấy (x,y)=(0,0) ko là nghiệm của hệ phương trình
\(\Leftrightarrow\left\{{}\begin{matrix}xy^2+xy+y^2=0\left(1\right)\\xy^2-4=x^2\left(2\right)\end{matrix}\right.\)
Trừ từng vế của (1) cho (2) ta được: \(y^2+xy+4=-x^2\Leftrightarrow x^2+xy+y^2+4=0\Leftrightarrow x^2+xy+\dfrac{1}{4}y^2+\dfrac{3}{4}y^2=-4\) \(\Leftrightarrow\left(x+\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2=-4\) Vô lí \(\Rightarrow\) Ko có x,y
Vậy hệ phương trình vô nghiệm
giải hpt: a,\(\left\{{}\begin{matrix}x^2+y^2+xy=7\\x^4+y^4+x^2y^2=21\end{matrix}\right.\) b,\(\left\{{}\begin{matrix}x+y+\dfrac{1}{x}+\dfrac{1}{y}=7\\x^2-y^2+\dfrac{1}{x^2}-\dfrac{1}{y^2}=21\end{matrix}\right.\)
a.
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+xy=7\\\left(x^2+y^2\right)^2-x^2y^2=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+xy=7\\\left(x^2+y^2+xy\right)\left(x^2+y^2-xy\right)=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+xy=7\\x^2+y^2-xy=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2=5\\xy=2\end{matrix}\right.\)
\(\Rightarrow x^2+\left(\dfrac{2}{x}\right)^2=5\)
\(\Leftrightarrow x^4-5x^2=4=0\)
\(\Leftrightarrow...\)
b.
ĐKXĐ: ...
\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=7\\\left(x+\dfrac{1}{x}\right)^2-\left(y+\dfrac{1}{y}\right)^2=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=7\\\left(x+\dfrac{1}{x}+y+\dfrac{1}{y}\right)\left(x+\dfrac{1}{x}-y-\dfrac{1}{y}\right)=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=7\\x+\dfrac{1}{x}-y-\dfrac{1}{y}=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}=5\\y+\dfrac{1}{y}=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-5x+1=0\\y^2-2y+1=0\end{matrix}\right.\)
\(\Leftrightarrow...\)
giải hpt: \(\left\{{}\begin{matrix}\sqrt{xy+\left(x-y\right)\left(\sqrt{xy}-2\right)}+\sqrt{x}=y+\sqrt{y}\\\left(x+1\right)\left(y+\sqrt{xy}+x-x^2\right)=4\end{matrix}\right.\)
giải hpt: \(\left\{{}\begin{matrix}\left(2x-1\right)^2+4\left(y-1\right)^2=10\\xy\left(x-1\right)\left(y-2\right)=-\dfrac{3}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4\left(x^2-x\right)+1+4\left(y^2-2y\right)+4=10\\\left(x^2-x\right)\left(y^2-2y\right)=-\dfrac{3}{2}\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x^2-x=u\\y^2-2y=v\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}4u+1+4v+4=10\\uv=-\dfrac{3}{2}\end{matrix}\right.\)
Chắc em tự giải được hệ này, chỉ cần thế là xong
giải hpt: a,\(\left\{{}\begin{matrix}x+y-\sqrt{xy}=3\\\sqrt{x+1}+\sqrt{y+1}=4\end{matrix}\right.\) b,\(\left\{{}\begin{matrix}x+y=5+\sqrt{\left(x-1\right)\left(y-1\right)}\\\sqrt{x-1}+\sqrt{y-1}=3\end{matrix}\right.\)
a.
ĐKXĐ: \(x;y\ge-1;xy\ge0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y-3=\sqrt{xy}\\x+y+2\sqrt{xy+x+y+1}=14\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+y=u\\xy=v\ge0\end{matrix}\right.\) với \(u^2\ge4v\)
\(\Rightarrow\left\{{}\begin{matrix}u-3=\sqrt{v}\\u+2\sqrt{u+v+1}=14\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}v=u^2-6u+9\left(u\ge3\right)\\4\left(u+v+1\right)=\left(14-u\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}v=\left(u-3\right)^2\\4u+4\left(u^2-6u+9\right)+4=\left(14-u\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}v=\left(u-3\right)^2\\3u^2+8u-156=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}v=\left(u-3\right)^2\\\left[{}\begin{matrix}u=6\\u=-\dfrac{26}{3}\left(loại\right)\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}u=6\\v=9\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+y=6\\xy=9\end{matrix}\right.\) \(\Rightarrow x=y=3\)
b.
ĐKXĐ: \(x;y\ge1\)
Xét \(\sqrt{x-1}+\sqrt{y-1}=3\)
\(\Leftrightarrow x+y-2+2\sqrt{\left(x-1\right)\left(y-1\right)}=9\)
\(\Leftrightarrow\sqrt{\left(x-1\right)\left(y-1\right)}=\dfrac{11-x-y}{2}\)
Thế vào pt đầu:
\(x+y=5+\dfrac{11-x-y}{2}\)
\(\Leftrightarrow x+y=7\Rightarrow y=7-x\)
Thế xuống pt dưới:
\(\sqrt{x-1}+\sqrt{6-x}=3\)
\(\Leftrightarrow5+2\sqrt{\left(x-1\right)\left(6-x\right)}=9\)
\(\Leftrightarrow\left(x-1\right)\left(6-x\right)=4\)
\(\Leftrightarrow...\)