Với mỗi số nguyên dương \(n\le2008\), đặt \(S_n=a^n+b^n\), với \(a=\frac{3+\sqrt{5}}{2};b=\frac{3-\sqrt{5}}{2}\)
CMR: với \(n\le1\), ta có \(S_{n+2}=\left(a+b\right)\left(a^{n+1}+b^{n+1}\right)-ab\left(a^n+b^n\right)\)
Với mỗi số nguyên dương \(n\le2008\)
Đặt \(S_n=a^n+b^n\) với \(a=\frac{3+\sqrt{5}}{2}\) và \(b=\frac{3-\sqrt{5}}{2}\)
CMR với \(n\ge1\) ta có \(S_n-2=\left[\left(\frac{\sqrt{5}+1}{2}\right)^n-\left(\frac{\sqrt{5}-1}{2}\right)^n\right]^2\)
Đáp án của bạn ở đây: https://dethihsg.com/de-thi-hoc-sinh-gioi-toan-9-phong-gddt-cam-thuy-2011-2012/amp/
Với mỗi số nguyên dương \(n\le2008\), đặt \(S_n=a^n+b^n\) với \(a=\dfrac{3+\sqrt{5}}{2},b=\dfrac{3-\sqrt{5}}{2}\). CMR: Với mọi n thỏa mãn điều kiện đề bài, Sn là số nguyên.
Với mỗi số nguyên dương \(n\le2008\), đặt \(S_n=a^n+b^n\) với \(a=\dfrac{3+\sqrt{5}}{2},b=\dfrac{3-\sqrt{5}}{2}\). CMR: Với mọi n thỏa mãn điều kiện đề bài, Sn là số nguyên.
Với mỗi số nguyên dương \(n\le2008\) đặt \(S_n=a^n+b^n\) với \(a=\dfrac{3+\sqrt{5}}{2}\), \(b=\dfrac{3-\sqrt{5}}{2}\)
CMR với \(n\ge1\) ta có \(S_n-2=\left[\left(\dfrac{\sqrt{5}+1}{2}\right)^n-\left(\dfrac{\sqrt{5}-1}{2}\right)^n\right]^2\)
Câu trả lời ở đây: https://dethihsg.com/de-thi-hoc-sinh-gioi-toan-9-phong-gddt-cam-thuy-2011-2012/amp/
Với n là số nguyên dương, đặt \(S_n=\frac{1}{1\sqrt{2}+2\sqrt{1}}+\frac{1}{2\sqrt{3}+3\sqrt{2}}+...+\frac{1}{n\sqrt{n+1}+\left(n+1\right)\sqrt{n}}\). Khi đó \(limS_n\) bằng ?
\(\frac{1}{n\sqrt{n+1}+\left(n+1\right)\sqrt{n}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
\(\Rightarrow S_n=1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
\(\Rightarrow S_n=1-\frac{1}{\sqrt{n+1}}\)
\(lim\left(S_n\right)=lim\left(1-\frac{1}{\sqrt{n+1}}\right)=1-0=1\)
Với mỗi số nguyên dương \(n\), đặt \(s_{n} = (2 - \sqrt{3})^n + (2 + \sqrt{3})^n\)
a) Chứng minh rằng: \(s_{n+2} = 4s_{n+1} - s_{n}\)
b) Chứng minh rằng sn là số nguyên với mọi số nguyên dương n và tìm số dư của s2018 khi chia cho 3.
c) Chứng minh rằng \([(2 + \sqrt{3})^n] = s_{n} - 1\) với mọi số nguyên dương \(n\), trong đó kí hiệu [x] là phần nguyên của số thực \(x\).
Với số tự nhiên n , \(n\ge3\)
Đặt \(S_n=\frac{1}{3\left(1+\sqrt{2}\right)}+\frac{1}{5\left(\sqrt{2}+\sqrt{3}\right)}+...+\frac{1}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}\)
Chứng minh rằng \(S_n< \frac{1}{2}\)
Ta co:
\(\frac{1}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{n+1+n}< \frac{\sqrt{n+1}-\sqrt{n}}{2\sqrt{n+1}.\sqrt{n}}=\frac{1}{2}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
Ap vào bài toan được
\(S_n=\frac{1}{3\left(1+\sqrt{2}\right)}+\frac{1}{5\left(\sqrt{2}+\sqrt{3}\right)}+...+\frac{1}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}\)
\(< \frac{1}{2}\left(\frac{1}{1}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{\sqrt{n+1}}\right)< \frac{1}{2}\)
iopdtg5 r4ytr'hfgo;hrt687y5t53434]\trvf;lkg
Với mọi số nguyên dương n,chứng minh rằng\(S_n=\left(3+\sqrt{5}\right)^n+\left(3-\sqrt{5}\right)^n\)
\(MN\perpÂB\), AH\(\perp BD\)
ta có: MN,AH là 2 đ/cao tgiac ANB cắt tại M nên \(MB\perp AN\)
Gọi giao điểm MB,AN là K \(\Rightarrow\widehat{BKN}=90\Rightarrow\widehat{NBM}+\widehat{ANB}=90\Leftrightarrow\widehat{BNI}+\widehat{ANB}=90\Leftrightarrow\widehat{ANI}=90\)Vì BM//DI nên góc NBM=BNI( SLT)
Cho biểu thức: \(S_n=\left(\sqrt{2}+1\right)^2+\left(\sqrt{2}-1\right)^n\)
(với n nguyên dương)
a. Tính \(S_{2;}S_3\)(cái này mình tính được)
b.Chứng minh rằng: Với mọi m,n nguyên dương và m>n, ta có: \(S_{m+n}=S_m\cdot S_n-S_{m-n}\)
c. Tính \(S_4\)