1, Tìm các số a,b,c biết :\(\frac{1}{0,abc}=a+b+c\)(a khác 0)
Tìm các chữ số a,b,c trong số thập phân 0,abc (a,b,c khác nhau và khác 0).Biết 0,abc=1:(a+b+c)
0,abc = 1: (a + b + c)
=> \(\frac{abc}{1000}=\frac{1}{a+b+c}\) => abc . (a+b +c) = 1000
Viết 1000 = 500.2 = 250.4 = 125.8 = 200 .5 = 100.10
thủ các cặp số trên, chỉ cố abc = 125 thỏa mãn
Vậy a = 1; b = 2; c = 5
tìm các chữ số a, b ,c trong số thập phân 0. abc( a b c khác nhau và khác 0)
Biết 0. abc= 1: ( a+b+c)
Ta có: \(1\div\left(a+b+c\right)=\overline{0,abc}=\frac{\overline{abc}}{1000}\)
\(\Leftrightarrow\overline{abc}\times\left(a+b+c\right)=1000\)
Vì \(\overline{abc}\)là số có ba chữ số nên ta có các cách phân tích sau:
\(1000=500\times2=250\times4=200\times5=125\times8=100\times10\)
Thử từng trường hợp trong các trường hợp trên, chỉ có \(\overline{abc}=125\)là thỏa mãn.
cho a;b;c là 3 số hữu tỉ từng đôi một khác nhau và khác 0
biết \(a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a}\) cmr: hoặc abc=1 hoặc abc=-1
a) Tìm các số x và y biết rằng \(\left(x-\frac{1}{2}\right)^{2016}+\left|\frac{3}{4}-y\right|=0\)
b) Cho 3 số a,b,c khác nhau và khác 0. Biết \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)
Tính giá trị của biểu thức \(P=\frac{b+c}{a}-\frac{a+c}{b}-\frac{a+b}{c}\)
a)\(\left(x-\frac{1}{2}\right)^{2016},\left|\frac{3}{4}-y\right|\ge0\)
\(\left(x-\frac{1}{2}\right)^{2016}+\left|\frac{3}{4}-y\right|=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x-\frac{1}{2}\right)^{2016}=0\\\left|\frac{3}{4}-y\right|=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{1}{2}=0\\\frac{3}{4}-y=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\y=\frac{3}{4}\end{cases}}\)
b)\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)
\(\Rightarrow\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}\)
\(\Rightarrow\frac{b+c}{a}-\frac{a+c}{b}-\frac{a+b}{c}=0\)
Cho a,b,c là các số tự nhiên khác 0 biết \(\frac{28}{29}<\frac{1}{a}+\frac{1}{b}+\frac{1}{c}<1\)
tìm GTNN của S=a+b+c
28/29=0,96551.......
mà a, b , c là số tự nhiên nên mình thử ra là 1/2+1/3+1/7 là nhỏ nhất
Tổng nhỏ nhất là 2+3+7=12
Mình thử đi thử lại rồi đúng
chonj số a,b,c nhỏ nhất là 2 trở lên thì
1/2+1/3+1/4 ko
1/2+1/3+1/5 ko
1/2+1/3+1/6 ko
1/2+1/3+1/7 chọn
Thay các chữ a,b,c bằng các chữ số khác nhau và khác 0 sao cho :
\(0,abc=\frac{1}{a+b+c}\)
\(0,abc=\frac{1}{a+b+c}\) = \(\frac{abc}{1000}=\frac{1}{a+b+c}\) = \(\frac{abc}{1000}=\frac{abc}{abcX\left(a+b+c\right)}\)
Vậy : 1000 = abc x ( a+b+c )
ta có : 1000 = 500x2 100=250x4
1000=200x5 1000=125x8 1000=100x10
vì a,b,c khác nhau và khác 0 nên ta chỉ xét trường hợp:
1000=125x8
ta có : abc x ( a+b+c ) = 125x8
chọn abc = 125 ; a+b+c = 8
Vậy: a=1 ; b=2 ; c=5
thay vào đề bài ta được :
\(0,125=\frac{1}{1+2+5}\)
Tìm 3 số a,b,c khác 0, biết:
\(\frac{1}{a}+\frac{1}{a+b}+\frac{1}{a+b+c}=1\)
Chứng minh rằng nếu (a2-bc)(b-abc)=(b2-ac)(a-abc)= các số a,b,c,a-b khác 0 thì \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=a+b+c\)
Cho a,b,c là các số thực thỏa mãn a,b,c khác 0 và \(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\). Chứng minh rằng:
\(\frac{a^6+b^6+c^6}{a^3+b^3+c^3}=abc\)
https://olm.vn/hoi-dap/detail/81117789731.html
bạn tham khảo
Ta có a+b+c=0 => \(a+b=-c\Rightarrow\left(a+b\right)^3=-c^3\Rightarrow a^3+b^3+c^3=-3ab\left(a+b\right)=3ab\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow ab+bc+ca=0\)
\(a^6+b^6+c^6=\left(a^3\right)^2+\left(b^3\right)^2+\left(c^3\right)^2=\left(a^3+b^3+c^3\right)^2-2\left(a^3b^3+b^3c^3+c^3a^3\right)\)
\(ab+bc+ca=0\Rightarrow a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2\)
Do đó: \(a^6+b^6+c^6=\left(3abc\right)^2-2\cdot3a^2b^2c^2=3a^2b^2c^2\)
Vậy \(\frac{a^6+b^6+c^6}{a^3+b^3+c^3}=\frac{3a^2b^2c^2}{3abc}=abc\left(đpcm\right)\)