Tìm nghiệm nguyên dương của pt \(3^x+171=y^2\)
Tìm nghiệm nguyên dương của phương trình 3x+171=y2
Mình nới học lớp 5 mà bố mình bắt làm bài lớp 9
1. tìm nghiệm nguyên dương của pt: 5(x+y+z+t) +10 = 2xyzt. bài này lm mãi k ra :)) :P
2. tìm nghiệm nguyên dương của pt: y^4 +y^2 = x^4 + x^3 + x^2 +x
xin câu tl chi tiết ak...
Tìm nghiệm nguyên dương của phương trình: \(3^x+171=y^2\)
Tìm nghiệm nguyên dương của phương trình \(3^x+171=y^2\)
Giúp mình bài này với các bạn ơi
số chính phương chia 4 dư 0 hoặc 1 mà 171 chia 4 dư 3
nên 3^x phải chia 4 dư 1 hay x chẵn
x=2k thì: \(\left(3^k\right)^2+171=n^2\)
đơn giản nha
1. Tìm nghiệm tự nhiên của pt: x2+3y3-3y2=65-3y
2. Tim nghiệm nguyên dương của pt: 3(x2-y2+y)=28-y3
GIÚP MÌNH NHÉ!
1. Tìm nghiệm tự nhiên của pt: x2+3y3-3y2=65-3y
2. Tim nghiệm nguyên dương của pt: 3(x2-y2+y)=28-y3
GIÚP MÌNH NHÉ!
\(x^2+y^3-3y^2=65-3y\Leftrightarrow x^2+\left(y-1\right)^3=64=0^2+4^3=8^2+0^3=\left(-8\right)^2+0^3\)( Vì \(x,y\inℤ\))
TH1: \(\hept{\begin{cases}x=0\\y-1=4\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=5\end{cases}}}\)
TH2: \(\hept{\begin{cases}x=8\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=8\\y=1\end{cases}}}\)
TH3: \(\hept{\begin{cases}x=-8\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-8\\y=1\end{cases}}}\)
1. Tìm nghiệm tự nhiên của pt: x2+3y3-3y2=65-3y
2. Tim nghiệm nguyên dương của pt: 3(x2-y2+y)=28-y3
GIÚP MÌNH NHÉ!
Tìm nghiệm nguyên dương của pt: 2^x +(x^2+1)(y^2-6y+8)=0.
Ta có \(2^x+\left(x^2+1\right)\left(y-2\right)\left(y-4\right)=0\)
Mà \(2^x>0,x^2+1>0\)
=> \(\left(y-2\right)\left(y-4\right)< 0\)
=> \(2< y< 4\)
=> \(y=3\)
Thay y=3 vào đề bài ta có:
\(2^x-\left(x^2+1\right)=0\)
=> \(2^x=x^2+1\)
Mà \(2^x\)chẵn với \(x>0\)
=> \(x\)lẻ
Đặt \(x=2k+1\)(k không âm)
Khi đó \(2^{2k+1}=\left(2k+1\right)^2+1\)
=> \(2.2^{2k}=4k^2+4k+2\)
=> \(2^{2k}=2k^2+2k+1\)
+ k=0 => \(2^0=1\)thỏa mãn
=> \(x=1\)
+ \(k>0\)=> \(2^k\)chẵn
Mà \(2k^2+2k+1\)lẻ với mọi k
=> không giá trị nào của k thỏa mãn
Vậy x=1,y=3
1/ tìm x,y nguyên dương thỏa mãn: \(x^2-y^2+2x-4y-10=0\)0
2/giải pt nghiệm nguyên :\(x^2+2y^2+3xy+3x+5y=15\)
3/tìm các số nguyên x;y thỏa mãn:\(x^3+3x=x^2y+2y+5\)
4/tìm tất cả các nghiệm nguyên dương x,y thỏa mãn pt:\(5x+7y=112\)