Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ngô nguyễn phương anh
Xem chi tiết
KAl(SO4)2·12H2O
6 tháng 3 2018 lúc 15:10

PT tương đương:

\(x^3+y^3+1-3xy=0\)

\(\Leftrightarrow\left(x+y+1\right)\left(x^2+y^2+1-xy-x-y\right)=0\)

Mà: \(x,y\inℤ\)

Nên: \(x^3+y^3+1-3xy=0\)

\(\Leftrightarrow2x^2+2y^2+2-2xy-2x-2y=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2=0\)

\(\Leftrightarrow x=y=1\)

Vậy: x = y = 1.

Comebacktome
6 tháng 3 2018 lúc 15:08

Ta có x3+y3=3xy-1

=> (x+y)3-3xy(x+y)-3xy+1=0

=>[(x+y)3+1]-3xy(x+y+1)=0

=>(x+y+1)[(x+y)2-x-y+1)]-3xy(x+y+1)=0

=>(x+y+1)(x2-xy+y2-x-y+1)=0

Vì x,y là các số nguyên dương nên x+y>0

=>x+y+1>1

=>x+y+1 khác 0

=>x2-xy+y2-x-y+1=0

=>2x2-2xy+2y2-2x-2y+2=0

=>(x-y)2+x2-2x+1+y2-2y+1=0

=>(x-y)2+(x-1)2+(y-1)2=0

=>(x-y)2 bé hơn hoặc bằng 0

    (y-1)2 bé hơn hoặc bằng 0

    (x-1)2 bé hơn hoặc bằng 0

Mà (x-y)lớn hơn hoặc bằng 0

      (x-1)2 lớn hơn hoặc bằng 0

      (y-1)2  lớn hơn hoặc bằng 0

=>(x-y)2=0

    (y-1)2=0

    (x-1)2=0

=>x=y=1

KAl(SO4)2·12H2O
6 tháng 3 2018 lúc 15:11

\(x^3+y^3+1\ge3xy\)

Dấu "=" xảy ra khi x = y = 1. 

Phạm Tường Vy
Xem chi tiết
Đặng vân anh
Xem chi tiết
Đinh Thùy Linh
7 tháng 6 2016 lúc 23:11

\(3xy-2x-5y=7\mid x;y\in N^+\)

\(\Leftrightarrow9xy-6x-15y=21\Leftrightarrow3x\left(3y-2\right)-5\left(3y-2\right)-10=21\)

\(\Leftrightarrow\left(3y-2\right)\left(3x-5\right)=31\)(1)

y nguyên dương nên (3y-2) dương => (3x-5) dương.

Từ (1) suy ra (3y-2) và (3x-5) là ước nguyên dương của 31 là: 1 và 31.

Thay \(\hept{\begin{cases}3y-2=1\\3x-5=31\end{cases}\Leftrightarrow\hept{\begin{cases}x=12\\y=1\end{cases}}}\)

Hoặc \(\hept{\begin{cases}3y-2=31\\3x-5=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=11\end{cases}}}\)

Vậy, bài toán có 2 nghiệm nguyên là (2;11) và (12;1).

Hủ
Xem chi tiết
Lê Tâm Thư
6 tháng 3 2018 lúc 22:31

I don't know

Vũ Thị NGọc ANh
Xem chi tiết
Cô Hoàng Huyền
22 tháng 9 2017 lúc 11:03

a) \(2xy^2+x+y+1=x^2+2y^2+xy\)

\(\Leftrightarrow2xy^2+x+y-x^2-2y^2-xy=-1\)

\(\Leftrightarrow2xy^2-2y^2+x-x^2+y-xy=-1\)

\(\Leftrightarrow2y^2\left(x-1\right)-x\left(x-1\right)-y\left(x-1\right)=-1\)

\(\Leftrightarrow\left(x-1\right)\left(2y^2-x-y\right)=-1\)

Để x nguyên thì x - 1 nguyên. Vậy thì \(x-1\in\left\{-1;1\right\}\)

Với x = 1, ta có \(2y^2-1-y=-1\Rightarrow2y^2-y=0\Rightarrow\orbr{\begin{cases}y=0\left(n\right)\\y=\frac{1}{2}\left(l\right)\end{cases}}\)

Với x = -1, ta có \(2y^2+1-y=1\Rightarrow2y^2+y=0\Rightarrow\orbr{\begin{cases}y=0\left(n\right)\\y=\frac{-1}{2}\left(l\right)\end{cases}}\)

Vậy phương trình có nghiệm (x; y) = (1; 0) hoặc (-1; 0).

Ngô Thành Chung
Xem chi tiết
Ngô Thành Chung
12 tháng 8 2021 lúc 9:45

Đừng dùng đạo hàm hay gì nhá

Ngọc Lê 219
Xem chi tiết
Anhh💘
Xem chi tiết
Lê Minh Tú
21 tháng 12 2017 lúc 13:54

Ta có: \(9xy+3x+3y=51\)

\(\Leftrightarrow3x\left(3y+1\right)+3y+1=52\)

\(\Leftrightarrow\left(3x+1\right)\left(3y+1\right)=52\)

vì x,y là số nguyên dương => 3x + 1; 3y + 1 cũng là số nguyên dương.

\(\Rightarrow3x+1\inƯ\left(52\right)=\left\{1;2;3;13;26;52\right\}\)

mà: \(x>0\Rightarrow3x+1>1\)

ta có: \(3x+1:3\left(1\right)\)

\(\Rightarrow3x+1\in\left\{4;13\right\}\)

\(\Rightarrow x\in\left\{1;4\right\}\)

\(\Rightarrow y\in\left\{4;1\right\}\)

\(\Rightarrow\left(x,y\right)\in\left\{\left(1,4\right);\left(4,1\right)\right\}\)

Trinh Dieu Linh
Xem chi tiết