Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tuyển Trần Thị
Xem chi tiết
vũ tiền châu
25 tháng 9 2017 lúc 19:52

Áp dụng bất đẳng thức bu nhi a ta có \(\left(x^2+y^2+z^2\right)3\ge\left(x+y+z\right)^2\)

Áp dụng ta có 

\(Q^2\le3\left(\frac{a}{1+a+ab}+\frac{b}{1+b+bc}+\frac{c}{1+c+ca}\right)\)

đặt \(M=\frac{a}{1+a+ab}+\frac{b}{1+b+bc}+\frac{c}{1+c+ca}=\frac{a}{1+a+ab}+\frac{ab}{a+ab+abc}+\frac{abc}{ab+abc+â^2bc}\)

    \(=\frac{1}{a+ab+1}+\frac{a}{a+ab+1}+\frac{ab}{1+ab+1}=1\)

=> \(Q^2\le3\Rightarrow Q\le\sqrt{3}\)

mặt khác Áp dụng cô si ta có 

\(a+b+c\ge3\sqrt[3]{abc}=3\Rightarrow\sqrt{a+b+c}\ge\sqrt{3}\Rightarrow\sqrt{a+b+c}\ge Q\) (ĐPCM)

Nguyễn Thiều Công Thành
25 tháng 9 2017 lúc 19:53

ta có:

\(\frac{a}{1+a+ab}+\frac{b}{1+b+bc}+\frac{c}{1+c+ca}=\frac{a}{abc+a+ab}+\frac{b}{1+b+bc}+\frac{bc}{b+bc+abc}\)

\(=\frac{1}{1+b+bc}+\frac{b}{1+b+bc}+\frac{bc}{1+b+bc}=1\)

ta có:

\(Q^2\le3\left(\frac{a}{1+a+ab}+\frac{b}{1+b+bc}+\frac{c}{1+c+ca}\right)=3\)

\(\Rightarrow Q\le\sqrt{3}=\sqrt{3\sqrt[3]{abc}}\le\sqrt{a+b+c}\left(Q.E.D\right)\)

dấu = xảy ra khi a=b=c=1

Châu Trần
Xem chi tiết
Thắng Nguyễn
28 tháng 7 2017 lúc 21:06

a)Áp dụng BĐT Cauchy-Schwarz ta có:

\(VT^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\)

\(\le2\cdot\left(1+1+1\right)\left(a+b+c\right)\le6\)

\(\Rightarrow VT^2\le6\Rightarrow VT\le\sqrt{6}=VP\)

Xảy ra khi \(a=b=c=\frac{1}{3}\)

b)Áp dụng BĐT Cauchy-Schwarz ta có:

\(VT^2=\left(\sqrt{a+\sqrt{b+\sqrt{2c}}}+\sqrt{b+\sqrt{c+\sqrt{2a}}}+\sqrt{c+\sqrt{a+\sqrt{2b}}}\right)^2\)

\(\le\left(1+1+1\right)\left(a+b+c+Σ\sqrt{b+\sqrt{2c}}\right)\)

\(=3\left(6+\sqrt{b+\sqrt{2c}+\sqrt{c+\sqrt{2a}}}+\sqrt{a+\sqrt{2b}}\right)\)

Đặt \(A^2=\left(\sqrt{b+\sqrt{2c}+\sqrt{c+\sqrt{2a}}}+\sqrt{a+\sqrt{2b}}\right)^2\)

\(\le\left(1+1+1\right)\left(a+b+c+\sqrt{2a}+\sqrt{2b}+\sqrt{2c}\right)\)

\(=3\left(6+\sqrt{2a}+\sqrt{2b}+\sqrt{2c}\right)\)

Đặt tiếp: \(B^2=\left(\sqrt{2a}+\sqrt{2b}+\sqrt{2c}\right)^2\)

\(\le2\cdot\left(1+1+1\right)\left(a+b+c\right)\le36\Rightarrow B\le6\)

\(\Rightarrow A^2\le3\left(6+\sqrt{2a}+\sqrt{2b}+\sqrt{2c}\right)\le3\cdot12=36\Rightarrow A\le6\)

\(\Rightarrow VT^2\le3\left(6+\sqrt{b+\sqrt{2c}+\sqrt{c+\sqrt{2a}}}+\sqrt{a+\sqrt{2b}}\right)\)

\(\le3\left(6+6\right)=3\cdot12=36\Rightarrow VT\le6=VP\)

Xảy ra khi \(a=b=c=2\)

Duong Thi Nhuong
Xem chi tiết
Phùng Khánh Linh
10 tháng 9 2018 lúc 18:47

\(a.\) Áp dụng BĐT Cô - Si cho các số không âm , ta có :

\(\sqrt{1}.\sqrt{a+1}\le\dfrac{a+1+1}{2}=\dfrac{a+2}{2}\)

\(\sqrt{1}.\sqrt{b+1}\le\dfrac{b+1+1}{2}=\dfrac{b+2}{2}\)

\(\sqrt{1}.\sqrt{c+1}\le\dfrac{c+1+1}{2}=\dfrac{c+2}{2}\)

\(\Rightarrow\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}\le\dfrac{a+b+c+6}{2}=\dfrac{7}{2}=3,5\)

Dấu \("="\) xảy ra khi : \(\left\{{}\begin{matrix}a+1=1\\b+1=1\\c+1=1\end{matrix}\right.\)\(\Leftrightarrow a=b=c=0\)\(\Rightarrow a+b+c\ne1\left(trái-với-giả-thiết\right)\)

\(\Rightarrow\) Dấu \("="\) không xảy ra .

\(\Rightarrow\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}< 3,5\)

\(b.\) Áp dụng BĐT Bunhiacopxki , ta có :

\(\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c}\right)^2\le\left(1^2+1^2+1^2\right)\left(a+b+b+c+a+c\right)=3.2=6\)

\(\Rightarrow\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c}\le\sqrt{6}\)

Dấu " = " xảy ra khi : \(a+b=b+c=a+c\Rightarrow a=b=c=\dfrac{1}{3}\)

DƯƠNG PHAN KHÁNH DƯƠNG
10 tháng 9 2018 lúc 18:51

Câu a : Dùng BĐT Bu-nhi-a-cốp-xki ta có :

\(\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}\le\sqrt{3\left(a+b+c+3\right)}=\sqrt{12}=3,46< 3,5\)

Câu b tương tự :

\(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le\sqrt{6\left(a+b+c\right)}=\sqrt{6}\)

Ngoc Nhi Tran
Xem chi tiết
đề bài khó wá
3 tháng 12 2019 lúc 12:20

Áp dụng BĐT Bunhiacopxki, ta có :

\((\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a})^2\le\left(1^2+1^2+1^2\right)\left(a+b+b+c+c+a\right)=3.2=6\)

\(\Leftrightarrow\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le\sqrt{6}\)

Dấu "=" xảy ra khi và chỉ khi a+b=b+c=c+a => a=b=c =1/3

Khách vãng lai đã xóa
Phan Quang Thái
Xem chi tiết
Hoàng Lê Bảo Ngọc
9 tháng 12 2016 lúc 17:03

Áp dụng BĐT Bunhiacopxki, ta có : 

\(\left(1.\sqrt{a+b}+1.\sqrt{b+c}+1.\sqrt{c+a}\right)^2\le\left(1^2+1^2+1^2\right)\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]\)

\(\Rightarrow\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\le6\left(a+b+c\right)\)

\(\Rightarrow\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le\sqrt{6}\)

Khởi My
Xem chi tiết
ha thi thuy
Xem chi tiết
Akai Haruma
12 tháng 8 2017 lúc 0:39

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\((\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a})^2\leq (a+b+b+c+c+a)(1+1+1)\)

\(\Leftrightarrow (\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a})^2\leq 6(a+b+c)=6\)

\(\Rightarrow \sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\leq \sqrt{6}\)

Ta có đpcm

Dấu bằng xảy ra khi \(a=b=c=\frac{1}{3}\)

Vo Thi Minh Dao
Xem chi tiết
tanbien
Xem chi tiết