Tính số đo các góc của tam giác ABC biết góc A -góc C=12 độ, góc B -góc C=6 độ
C1: Biết 2 lần góc A bằng 3 lần góc B và góc A - góc B = 30 độ. Tính các góc của tam giác ABC
C2: Cho tam giác ABC, góc B>góc C, đường phân giác góc ngoài BA của A cắt tia CB tại A
a) Chứng minh góc AEB = B-C phần 2
b) Tính số đo góc B,góc C của tam giác ABC, biết góc A=60 độ và góc AEB=15 độ
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
1. Cho tam giác ABC có góc A bằng 74 độ góc B bằng 47 độ. Tính số đo góc ngoài tại đỉnh C?
2. Cho tam giác DEF có góc F bằng 40 độ, D - E bằng 52 độ. Tính số đo góc D, góc E?
3. Cho tam giác ABC có góc A bằng x, số đo góc B bằng 2x, số đo góc C bằng 3x. Tính số đo các góc của tam giác ABC
Bài 1:
Số đo góc ngoài tại đỉnh C là \(74^0+47^0=121^0\)
Câu 2:
Đặt \(\widehat{D}=a;\widehat{E}=b\)
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}a-b=52\\a+b=140\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=96\\b=44\end{matrix}\right.\)
Bài 3:
Theo đề, ta có: x+2x+3x=180
=>6x=180
=>x=30
=>\(\widehat{A}=30^0;\widehat{B}=60^0;\widehat{C}=90^0\)
biết tổng số đo 3 góc của tam giác ABC là 180 độ tính số đo góc A , góc B , góc c biết A = 3/5 B , B=6/7 C
Bài 1:
cho tam giác ABC . tính số đo các góc còn lại của tam giác , biết
a. góc A=90 độ ; góc C=32 độ
b. góc A : góc B : góc C = 2:7:1
c. góc B=75 độ và góc A : góc C = 3:2
giúp em với anh chị mai em thi rồi ạ
Giải
a) Xét \(\Delta ABC\) ta có :
\(\widehat{B}=\widehat{A}+\widehat{C}=180^0\) ( Định lí tổng 3 góc của 1 tam giác )
\(\widehat{B}=90^0+32^0=180^0\)
\(\widehat{B}=122^0=180^0\)
\(\widehat{B}=180^0-122^0=58^0\)
b)
Theo bài ra ta có : \(\widehat{A}:\widehat{B}:\widehat{C}=2:7:1\)
\(\Rightarrow\dfrac{\widehat{A}}{2}=\dfrac{\widehat{B}}{7}=\dfrac{\widehat{C}}{1}\)
Lại có : \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\) ( Định lí tổng 3 góc của 1 tam giác )
Áp dụng tính chất của dãy tỉ số bằng nhau nên ta có :
\(\dfrac{\widehat{A}}{2}=\dfrac{\widehat{B}}{7}=\dfrac{\widehat{C}}{1}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{2+7+1}=\dfrac{180^0}{10}=18^0\)
\(+)\)\(\dfrac{\widehat{A}}{2}=18^0\Rightarrow\widehat{A}=18^0\times2=36^0\)
\(+)\)\(\dfrac{\widehat{B}}{7}=18^0\Rightarrow\widehat{B}=18^0\times7=126^0\)
\(+)\)\(\dfrac{\widehat{C}}{1}=18^0\Rightarrow\widehat{C}=18^0\times1=18^0\)
c)
Xét \(\Delta ABC\) ta có :
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\) ( Định lí trong 3 góc cùng 1 tam giác )
\(\widehat{A}+75^0+\widehat{C}=180^0\)
\(\widehat{A}+\widehat{C}=180^0-75^0\)
\(\widehat{A}+\widehat{C}=105^0\)
Theo bài ra ta có :
\(\widehat{A}:\widehat{C}=3:2\Rightarrow\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau nên ta có :
\(\dfrac{\widehat{A}}{3}=\dfrac{\widehat{C}}{2}=\dfrac{\widehat{A}+\widehat{C}}{3+2}=\dfrac{105^0}{5}=21^0\)
\(+)\)\(\dfrac{\widehat{A}}{3}=21^0\Rightarrow\widehat{A}=21^0\times3=63^0\)
\(+)\)\(\dfrac{\widehat{C}}{2}=21^0\Rightarrow\widehat{C}=21^0\times2=42^0\)
a)
Xét tam giác ABC có
\(A+B+C=180^o\\ =>90^o+B+32^o=180^o\\ =>B=58^o\)
b)
góc A: góc B: góc C tỉ lệ 2:7:1
=> \(\dfrac{A}{2}=\dfrac{B}{7}=\dfrac{C}{1}\)
tổng 3 góc tam giác bằng 180 độ
áp dãy tỉ số bằng nhau ta có
\(\dfrac{A}{2}=\dfrac{B}{7}=\dfrac{C}{1}=\dfrac{A+B+C}{2+7+1}=\dfrac{180}{10}=18\)
=> \(A=18\cdot2=36^o,B=18\cdot7=126^o,C=18\cdot1=18^o\)
c)
có
\(A+B+C=180^o\\ =>A+75^o+C=180^o\\ =>A+C=105^o\)
góc A : góc C tỉ lệ với 3:2
=> \(\dfrac{A}{3}=\dfrac{C}{2}\)
áp dụng dãy tỉ số bằng nhau ta có
\(\dfrac{A}{3}=\dfrac{C}{2}=\dfrac{A+C}{3+2}=\dfrac{105}{5}=21\)
\(=>A=21\cdot3=63^o,C=21\cdot2=42^o\)
Cho tam giác ABC có các tia phân giác góc B, C cắt nhau tại I . Biết góc C = 70 độ, góc BIC= 120 độ. Tính số đo các góc của tam giác ABC.
Ta có: góc C = 70 độ
=> góc BCI = 35 độ
=> góc IBC = 25
=> góc B = 50 độ
=> góc A = 60 độ
Vậy tam giác ABC có góc A = 60 độ; góc B = 50 độ; góc C = 70 độ
Cho tam giác ABC có góc B> góc C.Đường phân giác góc ngoài BAX của tam giác cắt CB tại E
a, chứng minh rằng tam giác ABE= (góc B - góc C):2
b, Tính số đo các góc B,C của tam giác biết góc A=60 độ,ABE=15 độ
Bài giải : a) Ta có : góc XAB = ( góc ABC + góc ACB ) => 1/2 góc BAX = 1/2 ( góc ABC + góc ACB )
=> góc EAB = 1/2 ( góc B + góc C ) = B+ C/2 .
b) Ta có : góc B + góc C = 1800 - 600 = 1200 => góc EAB = 1/2.120 = 600. Xét tam giác AEC ta lại có : góc C = 1800 - góc EAC - góc AEC = 1800 - ( góc EAB + góc ABC ) - góc CEA = 1800 - ( 600 + 600 ) - 150 = 450. Xét tam giác ABC : góc A + góc B+ góc C = 1800
=> góc B = 1800 - góc A - góc C = 1800 - 600 -450 = 750 .
Cho hình tam giác ABC, có góc A = 80 độ và góc B - góc C = 20 độ
a) Tính số đo các góc B,C của tam giác ABC
b) Gọi AD là tia phân giác của góc A. Tính số đo của góc ADB
Tam giác ABC có số đo góc A,B,C tỉ lệ với 3;5;7.Tính số đo các góc của tam giác ABC (biết rằng tổng số đo 3 góc trong 1 tam giác =180 độ)