Chứng minh
1/ 2 căn 1+ 1/ 3 căn 2+ 1/4 căn 3+...+1/2005 căn 2004<2
1/ P=căn 1+1/a1+căn1+1/a^2+...+căn 1+1/an
2/căn 3 (x^3-3x+(x^2-1) căn x^2-4)/2 - căn x^3-3x(x^2-1) căn x^2-4)/2
Tai x =căn 3 2005
so sánh
a) 1+căn 5 và căn 24
b) căn 2002 + căn 2004 và 2 căn 2005
a) Ta có:
√2005 + √2003 > √2002 + √2000
<=> 1/(√2005 + √2003) < 1/(√2002 + √2000)
<=> 2/(√2005 + √2003) < 2/(√2002 + √2000)
<=> (2005 - 2003)/(√2005 + √2003) < (2002 - 2000)/(√2002 + √2000)
<=> √2005 - √2003 < √2002 - √2000
<=> √2005 + √2000 < √2002 + √2003
b) Tương tự câu a
√(a + 6) + √(a + 4) > √(a + 2) + √a
<=> 1/[√(a + 6) + √(a + 4)] < 1/[√(a + 2) + √a]
<=> 2/[√(a + 6) + √(a + 4)] < 2/[√(a + 2) + √a]
<=> [(a + 6) - (a + 4)/[√(a + 6) + √(a + 4)] < [(a + 2) - a]/[√(a + 2) + √a]
<=> √(a + 6) - √(a + 4) < √(a + 2) - √a
<=> √(a + 6) + √a < √(a + 4) + √(a + 2)
Chứng minh: (1/ căn 1) + (1/ căn 2) + (1/ căn 3 ) + ... + (1/ căn 100) > 18
chứng minh rằng : căn ( ( 6 căn 3 -8 ) / (2 căn 3 +1)) = -1
Câu 1: Chứng minh rằng:
1/ căn 1+1/căn2+1/căn 3+1/căn 4+1/căn 5+...+1/căn 100>10
Câu 2: Tìm các số nguyên dương x;y
\(2^x+2^y=72 \)
Bài 1: Cho biểu thức: B = Căn 1 - 4x + 4x^2
a/ Rút gọn B
b/ Tính giá trị của B khi x = -7
Bài 2: Chứng minh: Căn 7 + 4 căn 3 + căn 7 - 4 căn 3 là 1 số nguyên
Bài 1:
a) \(B=\sqrt{1-4x+4x^2}\)
\(=\sqrt{\left(1-2x\right)^2}\)
\(=\left|1-2x\right|\)
Nếu \(x\le\frac{1}{2}\)thì: \(B=1-2x\)
Nếu \(x>\frac{1}{2}\)thì: \(B=2x-1\)
b) Tại \(x=-7\)thì: \(B=1-2.\left(-7\right)=15\)
Bài 2:
\(\sqrt{7+4\sqrt{3}}+\sqrt{7-4\sqrt{3}}\)
\(=\sqrt{\left(\sqrt{3}\right)^2+2.\sqrt{3}.2+2^2}+\sqrt{2^2-2.2.\sqrt{3}+\left(\sqrt{3}\right)^2}\)
\(=\sqrt{\left(\sqrt{3}+2\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(=\sqrt{3}+2+2-\sqrt{3}=4\) (đpcm)
cho a,b,c là 3 số thực không âm thỏa mãn a+b+c= căn a + căn b +căn c=2 chứng minh rằng : căn a/(1+a) + căn b/(1+b) + căn c /( 1+ c ) = 2/ căn (1+a)(1+b)(1+c)
Chứng minh: a) 1/căn 1+1/căn 2+1/căn 3+…………+1/căn 100>18<19
Ý bạn là \(18< \frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}< 19\) ?
Ta có:
\(A=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}=\frac{2}{2\sqrt{1}}+\frac{2}{2\sqrt{2}}+...+\frac{2}{2\sqrt{100}}\)
\(\Rightarrow A>\frac{2}{1+\sqrt{2}}+\frac{2}{\sqrt{2}+\sqrt{3}}+...+\frac{2}{\sqrt{100}+\sqrt{101}}\)
\(\Rightarrow A>\frac{2\left(\sqrt{2}-1\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}+\frac{2\left(\sqrt{3}-\sqrt{2}\right)}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}+...+\frac{2\left(\sqrt{101}-\sqrt{100}\right)}{\left(\sqrt{101}-\sqrt{100}\right)\left(\sqrt{101}+\sqrt{100}\right)}\)
\(\Rightarrow A>2\left(\sqrt{2}-1+\sqrt{3}-2+...+\sqrt{101}-\sqrt{100}\right)\)
\(\Rightarrow A>2\left(\sqrt{101}-1\right)>2\left(\sqrt{100}-1\right)=18\)
Tương tự:
\(A=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}=1+\frac{2}{2\sqrt{2}}+\frac{2}{2\sqrt{3}}+...+\frac{2}{2\sqrt{100}}\)
\(\Rightarrow A< 1+\frac{2}{1+\sqrt{2}}+\frac{2}{\sqrt{2}+\sqrt{3}}+...+\frac{2}{\sqrt{99}+\sqrt{100}}\)
Nhân liên hợp tử mẫu và rút gọn ta được (giống chứng minh >18 bên trên):
\(A< 1+2\left(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\right)\)
\(\Rightarrow A< 1+2\left(\sqrt{100}-1\right)=1+18=19\)
\(\Rightarrow18< A< 19\) (đpcm)