\(7\left(x^2+x\right)=\sqrt{\frac{4x+9}{28}}\)
\(\sqrt{\frac{4x+9}{28}}=7\left(x^2+1\right)\)
ĐKXĐ: ...
Đặt \(\sqrt{\frac{4x+9}{28}}=\frac{2t+1}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{4x+9}{28}=\frac{\left(2t+1\right)^2}{4}\\\frac{2t+1}{2}=7\left(x^2+1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+1=14t^2+14t\\2t+1=14x^2+14x\end{matrix}\right.\)
Trừ vế cho vế: \(14x^2-14t^2+14x-14t=2t-2x\)
\(\Leftrightarrow14\left(x-t\right)\left(x+t\right)+16\left(x-t\right)=0\)
\(\Leftrightarrow\left(x-t\right)\left(14x+14t+16\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=t\\14x+14t+16=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{\frac{4x+9}{7}}=2x+1\left(x\ge-\frac{1}{2}\right)\\\sqrt{28x+49}=-14x-9\left(x\le-\frac{9}{14}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\frac{4x+9}{7}=\left(2x+1\right)^2\left(x\ge-\frac{1}{2}\right)\\28x+49=\left(-14x-9\right)^2\left(x\le-\frac{9}{14}\right)\end{matrix}\right.\)
\(\Leftrightarrow...\)
1)\(7\sqrt{3x-7}+\left(4x-7\right)\sqrt{7-x}=32\)
2)\(4x^2-11x+6=\left(x-1\right)\sqrt{2x^2-6x+6}\)
3)\(9+3\sqrt{x\left(3-2x\right)}=7\sqrt{x}+5\sqrt{3-2x}\)
4)\(\sqrt{2x^2+4x+7}=x^4+4x^3+3x^2-2x-7\)
5)\(\frac{6-2x}{\sqrt{5-x}}+\frac{6+2x}{\sqrt{5+x}}=\frac{8}{3}\)
6)\(2\left(5x-3\right)\sqrt{x+1}+\left(x+1\right)\sqrt{3-x}=3\left(5x+1\right)\)
7)\(\sqrt{7x+7}+\sqrt{7x-6}+2\sqrt{49x^2+7x-42}=181-14x\)
Gpt:
a,\(3x^3-x^2+2x-28+\left(x^3-4\right)\sqrt{x^3-7}=0\)
b,\(8x^9+x^3=3x^2+4x+2\)
ĐKXĐ: \(x\ge\sqrt[3]{7}\)
\(4x^3-x^2+2x-32+\left(x^3-4\right)\left(\sqrt{x^3-7}-1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(4x^2+7x+16\right)+\dfrac{\left(x^3-4\right)\left(x-2\right)\left(x^2+2x+4\right)}{\sqrt{x^3-7}+1}=0\)
\(\Leftrightarrow\left(x-2\right)\left(4x^2+7x+16+\dfrac{\left(x^3-4\right)\left(x^2+2x+4\right)}{\sqrt{x^3-7}+1}\right)=0\)
\(\Leftrightarrow x=2\) (ngoặc đằng sau luôn dương do \(x^3-4=x^3-7+3>0\))
2.
\(\Leftrightarrow\left(2x^3\right)^3+2x^3=x^3+3x^2+3x+1+x+1\)
\(\Leftrightarrow\left(2x^3\right)^3+2x^3=\left(x+1\right)^3+x+1\)
Đặt \(\left\{{}\begin{matrix}2x^3=a\\x+1=b\end{matrix}\right.\)
\(\Rightarrow a^3-b^3+a-b=0\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+1\right)=0\)
\(\Leftrightarrow a=b\)
\(\Rightarrow2x^3=x+1\Leftrightarrow\left(x-1\right)\left(2x^2+2x+1\right)=0\)
Rút gọn:
\(\left(\frac{2+\sqrt{x}}{2-\sqrt{x}}-\frac{2-\sqrt{x}}{2+\sqrt{x}}-\frac{4x}{x-4}\right):\frac{x-6\sqrt{x}+9}{\left(2-\sqrt{x}\right)\left(\sqrt{x}-3\right)}\)
= \(\left[\frac{2+\sqrt{x}}{2-\sqrt{x}}-\frac{2-\sqrt{x}}{2+\sqrt{x}}-\frac{4x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right]:\frac{x-6\sqrt{x}+9}{\left(2-\sqrt{x}\right)\left(\sqrt{x}-3\right)}\)
= \(\left[\frac{2+\sqrt{x}}{2-\sqrt{x}}-\frac{2-\sqrt{x}}{2+\sqrt{x}}+\frac{4x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\right]:\frac{\left(\sqrt{x}-3\right)^2}{\left(2-\sqrt{x}\right)\left(\sqrt{x}-3\right)}\)
= \(\left[\frac{\left(2+\sqrt{x}\right)^2}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}-\frac{\left(2-\sqrt{x}\right)^2}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}+\frac{4x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\right]:\frac{\sqrt{x}-3}{2-\sqrt{x}}\)
= \(\left[\frac{4+4\sqrt{x}+x-4+4\sqrt{x}-x+4x}{nt}\right]:nt\)
\(=\left[\frac{8\sqrt{x}+4x}{nt}\right]:nt\)
\(=\left[\frac{4\sqrt{x}\left(2+\sqrt{x}\right)}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\right]:nt\)
\(=\frac{4\sqrt{x}}{2-\sqrt{x}}.\frac{\left(2-\sqrt{x}\right)}{\sqrt{x}-3}\)
\(=\frac{4\sqrt{x}}{\sqrt{x}-3}\)
giải pt bằng cách đặt ẩn phụ:
a) \(x^3+\sqrt{\left(1-x^2\right)^3}=x\sqrt{\left(2-2x^2\right)}\)
b) \(\frac{9-2x}{\sqrt{\left(4-x\right)}}+\frac{4x+3}{\sqrt{\left(4x+1\right)}}=\frac{15}{2}\)
c) \(\sqrt[3]{\left(7-16x\right)}+2\sqrt{\left(2x+8\right)}=5\)
d) \(5\sqrt{\left(x+1\right)}-2\sqrt[3]{\left(7x+6\right)}=4\)
c) (d tương tự)
\(\sqrt[3]{7-16x}=a;\text{ }\sqrt{2x+8}=b\Rightarrow a^3+8b^2=71\)
và \(a+2b=5\)
--> Thế
\(a\text{) }\sqrt{1-x^2}=y\Rightarrow x^2+y^2=1\)
Mà \(x^3+y^3=\sqrt{2}xy\Rightarrow\left(x^3+y^3\right)^2=2x^2y^2=2x^2y^2\left(x^2+y^2\right)\text{ (*)}\)
Tới đây có dạng đẳng cấp, có thể phân tích nhân tử hoặc chia xuống.
y = 0 thì x = 1 (không thỏa pt ban đầu)
Xét y khác 0. Chia cả 2 vế của (*) cho y6:
\(\text{(*)}\Leftrightarrow\left(\frac{x^3}{y^3}+1\right)^2=2\frac{x^2}{y^2}\left(\frac{x^2}{y^2}+1\right)\)\(\Leftrightarrow\left(\frac{x}{y}-1\right)\left[\left(\frac{x}{y}\right)^5+\left(\frac{x}{y}\right)^4+\left(\frac{x}{y}\right)^3+3\left(\frac{x}{y}\right)^2+\frac{x}{y}-1\right]=0\)
Không khả quan lắm :)) bạn tự tìm cách khác nhé.
1) \(\frac{\sqrt{7}+\sqrt{5}}{\sqrt{7}-\sqrt{5}}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}\)
2) \(x+2y-\sqrt{\left(x^2-4xy+4y^2\right)^2\left(x\ge2y\right)}\)
3) 4x + \(\sqrt{\left(x-12\right)^2}\left(x\ge2\right)\)
1) \(\frac{\sqrt{7}+\sqrt{5}}{\sqrt{7}-\sqrt{5}}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}\)
= \(\frac{ \left(\sqrt{7}+\sqrt{5}\right)^2}{\left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right)}+\frac{\left(\sqrt{7}-\sqrt{5}\right)^2}{\left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right)}\)
= \(\frac{\left(\sqrt{7}+\sqrt{5}\right)^2+\left(\sqrt{7}-\sqrt{5}\right)^2}{\left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right)}\) = \(\frac{\left(\sqrt{7}\right)^2+2\sqrt{7}.\sqrt{5}+\left(\sqrt{5}\right)^2+\left(\sqrt{7}\right)^2-2\sqrt{7}.\sqrt{5}+\left(\sqrt{5}\right)^2}{\left(\sqrt{7}\right)^2-\left(\sqrt{5}\right)^2}\)
= \(\frac{7+2\sqrt{35}+5+7-2\sqrt{35}+5}{7-5}\) = \(\frac{24}{2}=12\)
2) \(x+2y-\sqrt{\left(x^2-4xy+4y^2\right)^2}\left(x\ge2y\right)\)
= \(x+2y-\sqrt{\left(x-2y\right)^4}\) = \(x+2y-|x-2y|\)
= \(x+2y-\left(x-2y\right)\) = \(x+2y-x+2y=4y\)
3)\(4x+\sqrt{\left(x-12\right)^2}\left(x\ge2\right)\)
= \(4x+x-12=5x-12\)
giai pt:
a) \(\sqrt{x^2-4x-12}=9-2x\)
b) \(\left(x+1\right)\sqrt[3]{15x^2-x-1}=x^2-1\)
c) \(\left(2x-2\right)\sqrt{2x-1}=6\left(x-1\right)\)
d) \(\frac{\sqrt{-x^2+4x-3}-1}{x-3}=2\)
e) \(\frac{5+\sqrt{x+1}}{x-2}=7\)
Đệ biết là có người làm câu c,d nên xin xí câu e :3
ĐK: \(\left\{{}\begin{matrix}x\ge-1\\x\ne2\end{matrix}\right.\)
\(PT\Leftrightarrow5+\sqrt{x+1}=7\left(x-2\right)\)
\(\Leftrightarrow\sqrt{x+1}=7x-19\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\frac{19}{7}\\x+1=49x^2-266x+361\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\frac{19}{7}\\49x^2-267x+360=0\end{matrix}\right.\)
\(\Rightarrow x=3\left(tm\right)\)
a/ \(\Leftrightarrow\left\{{}\begin{matrix}9-2x\ge0\\x^2-4x-12=\left(9-2x\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le\frac{9}{2}\\3x^2-32x+93=0\end{matrix}\right.\)
Phương trình vô nghiệm
b/ \(\Leftrightarrow\left(x+1\right)\sqrt[3]{15x^2-x-1}-\left(x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(\sqrt[3]{15x^2-x-1}-x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\Rightarrow x=-1\\\sqrt[3]{15x^2-x-1}-x+1=0\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\sqrt[3]{15x^2-x-1}=x-1\)
\(\Leftrightarrow15x^2-x-1=x^3-3x^2+3x-1\)
\(\Leftrightarrow x^3-18x^2+4x=0\)
\(\Leftrightarrow x\left(x^2-18x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=9\pm\sqrt{77}\\\end{matrix}\right.\)
c/ ĐKXĐ: \(x\ge\frac{1}{2}\)
\(\Leftrightarrow2\left(x-1\right)\sqrt{2x-1}-6\left(x-1\right)=0\)
\(\Leftrightarrow2\left(x-1\right)\left(\sqrt{2x-1}-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\\sqrt{2x-1}-3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\2x-1=9\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)
d/ ĐKXĐ: \(1\le x< 3\)
\(\Leftrightarrow\sqrt{-x^2+4x-3}-1=2x-6\)
\(\Leftrightarrow\sqrt{-x^2+4x-3}=2x-5\) (\(x\ge\frac{5}{2}\))
\(\Leftrightarrow-x^2+4x-3=\left(2x-5\right)^2\)
\(\Leftrightarrow5x^2-24x+28=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2< \frac{5}{2}\left(l\right)\\x=\frac{14}{5}\end{matrix}\right.\)
e/ ĐKXĐ: \(\left\{{}\begin{matrix}x\ge-1\\x\ne2\end{matrix}\right.\)
\(\Leftrightarrow5+\sqrt{x+1}=7x-14\)
\(\Leftrightarrow\sqrt{x+1}=7x-19\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\frac{19}{7}\\x+1=\left(7x-19\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\frac{19}{7}\\49x^2-267x+360=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=3\\x=\frac{120}{49}< \frac{19}{7}\left(l\right)\end{matrix}\right.\)
1. Xét dấu các biểu thức sau :
a, f(x) = \(\frac{\left(7-4x\right)\left(x^2+x-2\right)}{2x^2-3x+2}\)
b, g(x) = \(\frac{\left(25-x^2\right)\left(x^2+6x+9\right)}{-x^2-2x+8}\)
c, h(x) = \(\frac{x\left(x^2-4x-12\right)}{\sqrt{6}x^2-3x+\sqrt{2}}\)
d, k(x) = \(\frac{-x^3-5x^2+4}{x^4+4x^3-8x-5}\)