Giải các pt sau bằng cách đặt ẩn phụ:
A. 3x6 - 10x3 + 3= 0
giải các pt sau bằng cách đặt ẩn phụ
b: \(\Leftrightarrow\left(x^2+3x-1\right)^2+4\left(x^2+3x-1\right)-2\left(x^2+3x-1\right)-8=0\)
\(\Leftrightarrow\left(x^2+3x-1\right)\left(x^2+3x-1+4\right)-2\left(x^2+3x-1+4\right)=0\)
\(\Leftrightarrow x^2+3x-3=0\)
\(\Delta=3^2-4\cdot1\cdot\left(-3\right)=9+12=21>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-3-\sqrt{21}}{2}\\x_2=\dfrac{-3+\sqrt{21}}{2}\end{matrix}\right.\)
d: \(\Leftrightarrow\left(x^2-3x\right)^2+6\left(x^2-3x\right)+8=3\)
\(\Leftrightarrow\left(x^2-3x\right)^2+5\left(x^2-3x\right)+\left(x^2-3x\right)+5=0\)
\(\Leftrightarrow x^2-3x+1=0\)
\(\Delta=\left(-3\right)^2-4\cdot1\cdot1=5>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{3-\sqrt{5}}{2}\\x_2=\dfrac{3+\sqrt{5}}{2}\end{matrix}\right.\)
giải pt sau bằng cách đặt ẩn phụ
Đặt \(\sqrt{x^2+x+1}=a\)
Pt trở thành \(3a=a^2+2\)
=>(a-1)(a-2)=0
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x+1=1\\x^2+x+1=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2+x=0\\\left(x+\dfrac{1}{2}\right)^2=\dfrac{13}{4}\end{matrix}\right.\)
\(\Leftrightarrow x\in\left\{0;-1;\dfrac{\sqrt{13}-1}{2};\dfrac{-\sqrt{13}-1}{2}\right\}\)
Giải các phương trình sau bằng cách đặt ẩn số phụ x - x - 1 -3 = 0
Đặt m = x - 1 .Điều kiện : m ≥ 0, x ≥ 1
Ta có : x - x - 1 -3 = 0 ⇔ (x -1) - x - 1 -2 =0
⇔ m 2 -m - 2 =0
Phương trình m 2 -m - 2 = 0 có hệ số a = 1, b = -1 , c = -2 nên có dạng
a – b + c = 0
Suy ra : m 1 = -1 (loại) , m 2 = -(-2)/1 = 2
Với m =2 ta có: x - 1 =2 ⇒ x -1 =4 ⇔ x =5
Giá trị của x thỏa mãn điều kiện bài toán
Vậy phương trình đã cho có 1 nghiệm : x=5
Giải các phương trình sau bằng cách đặt ẩn số phụ 2 x 2 x + 1 2 - 5 x x + 1 + 3 = 0
Đặt m = x/(x+1) .Điều kiện : x ≠ -1
⇔ 2 m 2 -5m +3 =0
Phương trình 2m2 -5m +3 = 0 có hệ số a = 2, b = -5 , c = 3 nên có dạng
a +b + c = 0
suy ra : m 1 = 1 , m 2 =3/2
Với m 1 =1 ta có: x/(x+1) =1 ⇔ x =x+1 ⇔ 0x =1 (vô nghiệm)
Với m = 3/2 ta có: x/(x+1) = 3/2 ⇔ 2x =3(x +1)
⇔ 2x =3x +3 ⇔ x =-3
Giá trị của x thỏa mãn điều kiện bài toán
Vậy phương trình đã cho có 1 nghiệm : x=-3
giải PT bằng cách đặt 1 ẩn phụ
\(x-\sqrt{x-1}-3=0\)
ĐKXĐ : \(1\le x\le3\)
\(x-\sqrt{x-1}-3=0\)
\(\Leftrightarrow\left(x-1\right)-\sqrt{x-1}-2=0\)
Đặt \(t=\sqrt{x-1},t\ge0\), suy ra pt trên trở thành \(t^2-t-2=0\Leftrightarrow\left(t-2\right)\left(t+1\right)=0\Leftrightarrow\orbr{\begin{cases}t=2\left(\text{nhận}\right)\\t=-1\left(\text{loại}\right)\end{cases}}\)
Với t = 2 suy ra x = 5
giải hệ pt bằng cách đặt ẩn phụ
\(\dfrac{3}{2x-y}-\dfrac{6}{x+y}=1\)
\(\dfrac{1}{2x-y}-\dfrac{1}{x+y}=0\)
đặt 1/2x-y là a
1/x+y là b
hpt ta đc:
3.a-6.b=1
a-b=0
( giải đi pạn)
Giải các phương trình sau bằng cách đặt ẩn số phụ 4 x - 5 2 – 6(4x -5) +8 =0
Đặt m =4x -5
Ta có: 4 x - 5 2 – 6(4x -5) +8 =0 ⇔ m 2 -6m +8 =0
∆ ’ = - 3 2 -1.8 =9 -8=1 > 0
∆ ' = 1 = 1
Vậy phương trình đã cho có 2 nghiệm x 1 =9/4 , x 2 =7/4
Giải các phương trình sau bằng cách đặt ẩn số phụ 2 x 2 + x - 2 2 +10 x 2 +5x -16 =0
Đặt m = 2 x 2 +x -2
Ta có: 2 x 2 + x - 2 2 +10 x 2 +5x -16 =0
⇔ 2 x 2 + x - 2 2 +5(2 x 2 +x -2) -6 =0
⇔ m 2 +5m -6 =0
Phương trình m 2 +5m -6 = 0 có hệ số a = 1, b = 5, c = -6 nên có dạng
a + b + c = 0
Suy ra : m 1 =1 , m 2 =-6
m1 =1 ta có: 2 x 2 +x -2 =1 ⇔ 2 x 2 +x -3=0
Phương trình 2 x 2 +x -3 = 0 có hệ số a = 2, b = 1 , c = -3 nên có dạng
a +b+c=0
Suy ra: x 1 =1 , x 2 =-3/2
Với m=-6 ta có: 2 x 2 +x -2 = -6 ⇔ 2 x 2 +x +4 =0
∆ = 1 2 -4.2.4 = 1 -32 = -31 < 0 . Phương trình vô nghiệm
Vậy phương trình đã cho có 2 nghiệm : x 1 =1 , x 2 =-32
Giải các phương trình sau bằng cách đặt ẩn số phụ x 2 + 3 x - 1 2 +2( x 2 +3x -1) -8 =0
Đặt m = x 2 +3x -1
Ta có: x 2 + 3 x - 1 2 +2( x 2 +3x -1) -8 =0 ⇔ m 2 +2m -8 =0
∆ ’ = 1 2 -1.(-8) =1 +8 =9 > 0
∆ ' = 9 =3
Với m = 2 thì : x 2 +3x - 1 = 2 ⇔ x 2 + 3x - 3 = 0
∆ ’ = 3 2 -4.1.(-3 )=9 +12=21 > 0
∆ ' = 21
Với m = -4 ta có: x 2 +3x -1 = -4 ⇔ x 2 +3x +3 = 0
∆ = 3 2 -4.1.3=9 -12 = -3 < 0
Phương trình vô nghiệm
Vậy phương trình đã cho có 2 nghiệm :