Cho tam giác ABC.. Trên tia đối của tia AB lấy điểm D sao cho ad=ac, trên tia đối của tia AC lấy điểm E sao cho AE=AB. Goi M và N lần lượt là trung điểm của BE và CD. CMR: ba điểm M,A, N thẳng hàng
Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và CD.
Chứng minh ba điểm M, A, N thẳng hàng.
Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và CD.
Chứng minh ba điểm M, A, N thẳng hàng.
\(AD=AC\Rightarrow\)△CAD cân tại A mà AM là trung tuyến.
\(\Rightarrow\)AM cũng là đường phân giác.
\(\Rightarrow\widehat{MAE}=\dfrac{\widehat{BAE}}{2}\left(1\right)\)
\(AE=AB\Rightarrow\)△BAE cân tại A mà AN là trung tuyến.
\(\Rightarrow\)AN cũng là đường phân giác.
\(\Rightarrow\widehat{CAN}=\dfrac{\widehat{CAD}}{2}\left(2\right)\)
Ta có: \(\widehat{BAE}=\widehat{CAD}\) (đối đỉnh), nên từ (1) và (2) suy ra:
\(\widehat{EAM}=\widehat{CAN}\)
Mà \(\widehat{EAM}+\widehat{CAM}=180^0\) (kề bù)
\(\Rightarrow\widehat{CAN}+\widehat{CAM}=180^0\)
\(\Rightarrow\widehat{MAN}=180^0\)
\(\Rightarrow\)M,A,N thẳng hàng.
Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và CD.
Chứng minh ba điểm M, A, N thẳng hàng.
cho tam giác ABC. Trên tia đối của AB lấy D sao cho AD=AC, trên tia đối của AC lấy E sao cho AE=AB. Gọi M và N lần lượt là trung điểm của BE và CD. Chứng minh 3 điểm M,A,N thẳng hàng
cm tam giác AEM= tam giác ACN => góc EAM=gocsCAN (2 góc tương ứng )
rồi ta có góc DAE+DAN+CAN=180độ (do E,A,C thẳng hàng)
lại có gócEAM=goscCAN=>DAE+DAN+EAM=180độ =>góc MAN là góc bẹt=> M,A,N thẳng hàng
tam giác AEM làm sao bằng tam giác ACN được hả bạn
ΔABC=ΔADE(c.g.c)⇒∠ABC=∠ADE,BC=DE⇒BC2=DE2ΔABC=ΔADE(c.g.c)⇒∠ABC=∠ADE,BC=DE⇒BC2=DE2 hay BM = DN.
ΔABM=ΔADN(c.g.c)⇒∠BAM=∠DAN.ΔABM=ΔADN(c.g.c)⇒∠BAM=∠DAN.
Mà ∠BAM+∠MAD=1800⇒∠DAN+∠MAD=1800=∠MAN∠BAM+∠MAD=1800⇒∠DAN+∠MAD=1800=∠MAN (đpcm).
Cho tam giác ABC. Trên tia đối của AB lấy D sao cho AD=AC, trên tia đối của AC lấy E sao cho AE=AB. Gọi M và N lần lượt là trung điểm của BE và CD. Chứng minh 3 điểm M,A,N thẳng hàng
bạn tham khảo link mà mk đưa cho nhé
hoiap247.com/cau-hoi/82020
nhớ k cho mk nhé
Hình bạn tự vẽ nha :)
Xét \(\Delta ABE\) có : AE = AB => \(\Delta ABE\) cân tại A
=> \(\widehat{ABE}\) = \(\widehat{AEB}\)
\(\widehat{BAC}\) = \(\widehat{ABE}\) + \(\widehat{AEB}\) = \(2\widehat{ABE}\)
Xét \(\Delta ADC\) có AD = AC => \(\Delta ADC\) cân tại A
=> \(\Delta ADC\) = \(\Delta ACD\)
\(\widehat{BAC}\) = \(\widehat{ADC}\) + \(\widehat{ACD}\) = \(2\widehat{ADC}\)
Suy ra : \(\widehat{ABE}\) = \(\widehat{ADC}\) hay \(\widehat{DBE}\) = \(\widehat{BDC}\)
=> BE // CD
\(\Delta ABE\) cân tại A có M là trung điểm của BC nên AM \(\perp\)BE
\(\Delta ADC\) cân tại A có N là trung điểm của CD nên AN \(\perp\)CD
Do đó 3 điểm M , A , N thẳng hàng
Các tìm kiếm liên quan đến cho tam giác abc. trên tia đối của tia ab lấy điểm d sao cho ad = ac, trên tia đối của ac lấy điểm e sao cho ae = ab. gọi m, n lần lượt là trung điểm của be và cd. chứng minh m, a, n thẳng hàng
Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD sao AD = AB. Trên tia đối của tia AC lấy điểm E sao cho AE = AC. Gọi M,N lần lượt là các điểm trên tia BC và ED sao cho CM = EN.
CMR: M, A,N thẳng hàng
tg ADE=ABC( AB=AD;AC=AE;A đối đỉnh)
=>gocE=C
xet tg AEN va tgACM bằng nhau( CM=EN;AE=AC;E=C)
=> goc NAE=CAM ( 2 goc nay o vi tri đối đỉnh nên M;A;N
Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD sao AD = AB. Trên tia đối của tia AC lấy điểm E sao cho AE = AC. Gọi M,N lần lượt là các điểm trên tia BC và ED sao cho CM = EN. CMR: M, A,N thẳng hàng
cho tam giác abc, AB=4,8cm; BC=3,6cm; AC= 6,4cm. trên AC lấy điểm E sao cho AE=2,4cm; trên AB lấy điểm D sao cho AD= 3,2 cm. gọi giao điểm của BC với ED là F. tính DF
Có: tam giác ABC đồng dạng với tam giác ADE
=>AB/AD=AC/AE
Có AB/AD=AB/2AB=1/2
AC/AE=AC/2AC=1/2
Vậy tam giác ABC đồng dạng với tam giác ADE the tỉ số đồng dạng là 1/2
cho tam giác ABC có ba góc nhọn , AB<AC . Vẽ tia đối của tia AB , trên đó lấy điểm D sao cho AD=AC . Vẽ tia đối của tia AC, trên đó lấy điểm E sao cho AE=AB . Lấy hai điểm M,N lần lượt là trung điểm của CD,BE .Chứng minh :
a) tam giác ADM = tam giác ACM
b) tam giác AEN = tam giác ABN
a: Xét ΔADM và ΔACM co
AD=AC
DM=CM
AM chung
=>ΔADM=ΔACM
b: Xét ΔAEN và ΔABN có
AE=AB
EN=BN
AN chung
=>ΔAEN=ΔABN