cho 1/a + 1/b + 1/c = 0. tính giá trị biểu thức bc/(a^2+2bc) + ac/(b^2+2ac) + ab/(c^2+2ab)
Ch ba số a,b,c khác 0 và ab+bc+ac=0
Tính giá trị của biểu thức A= ((a^2 / (a^2 + 2bc) + b^2 / (b^2 + 2ac) + c^2 / (c^2 + 2ba)) / (bc/(a^2 + 2bc) + ac/(b^2 + 2ac) + ab/(c^2+2ab))
Cho ba số a,b,c khác 0 và ab+bc+ac=0. Tính giá trị của biểu thức
A=\(\dfrac{\dfrac{a^2}{a^2+2bc}+\dfrac{b^2}{b^2+2ac}+\dfrac{c^2}{c^2+2ab}}{\dfrac{bc}{a^2+2bc}+\dfrac{ac}{b^2+2ac}+\dfrac{ab}{c^2+2ab}}\)
Lời giải:
Xét tử :
\(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}=\frac{a^2}{a^2+bc+(-ab-ac)}+\frac{b^2}{b^2+ac+(-ab-bc)}+\frac{c^2}{c^2+ab+(-bc-ac)}\)
\(=\frac{a^2}{a(a-b)-c(a-b)}+\frac{b^2}{b(b-c)-a(b-c)}+\frac{c^2}{c(c-a)-b(c-a)}\)
\(=\frac{a^2}{(a-c)(a-b)}+\frac{b^2}{(b-a)(b-c)}+\frac{c^2}{(c-a)(c-b)}\)
\(=\frac{a^2(c-b)+b^2(a-c)+c^2(b-a)}{(a-b)(b-c)(c-a)}\)
\(=\frac{(ab^2+bc^2+ca^2)-(a^2b+b^2c+c^2a)}{(ab^2+bc^2+ca^2)-(a^2b+b^2c+c^2a)}=1\)
Xét mẫu (tương tự bên tử)
\(\frac{bc}{a^2+2bc}+\frac{ac}{b^2+2ac}+\frac{ab}{c^2+2ab}=\frac{bc}{(a-c)(a-b)}+\frac{ac}{(b-a)(b-c)}+\frac{ab}{(c-a)(c-b)}\)
\(=\frac{bc(c-b)+ac(a-c)+ab(b-a)}{(a-b)(b-c)(c-a)}=\frac{(ab^2+bc^2+ca^2)-(a^2b+b^2c+c^2a)}{(a-b)(b-c)(c-a)}\)
\(=\frac{(ab^2+bc^2+ca^2)-(a^2b+b^2c+c^2a)}{(ab^2+bc^2+ca^2)-(a^2b+b^2c+c^2a)}=1\)
Do đó:
\(A=\frac{1}{1}=1\)
cho 3 số a,b,c \(\ne0\) và ab+bc+ac = 0 tính giá trị biểu thức
A= \(\dfrac{\dfrac{a^2}{a^2+2bc}+\dfrac{b^2}{b^2+2ac}+\dfrac{c^2}{c^2+2ab}}{\dfrac{bc}{a^2+2bc}+\dfrac{ac}{b^2+2ac}+\dfrac{ab}{c^2+2ab}}\)
chờ a,b,c đôi một khác nhau và 1/a+1/b+1/c=Q Tính giá trị A=(bc/a^2+2bc) + (ac/b^2+2ac) + (ab/c^2+2ab)
\(Cho \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 0 Tính giá trị biểu thức sau A = \frac{a^{2}}{a^{2}+2bc} + \frac{b^{2}}{b^{2}+2ac} + \frac{c^{2}}{c^{2}+2ab}\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
\(\Leftrightarrow\frac{bc+ca+ab}{abc}=0\)
\(\Leftrightarrow bc+ca+ab=0\)
\(\Leftrightarrow\hept{\begin{cases}bc=-ab-ca\\ca=-ab-bc\\ab=-ca-bc\end{cases}}\)
Ta có : \(A=\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\)
\(\Leftrightarrow A=\frac{a^2}{a^2+bc-ab-ca}+\frac{b^2}{b^2+ac-ab-bc}+\frac{c^2}{c^2+ab-ca-bc}\)
\(\Leftrightarrow A=\frac{a^2}{\left(a-b\right)\left(a-c\right)}+\frac{b^2}{\left(b-a\right)\left(b-c\right)}+\frac{c^2}{\left(c-a\right)\left(c-b\right)}\)
\(\Leftrightarrow A=\frac{a^2}{\left(a-b\right)\left(a-c\right)}-\frac{b^2}{\left(b-c\right)\left(a-b\right)}+\frac{c^2}{\left(a-c\right)\left(b-c\right)}\)
\(\Leftrightarrow A=\frac{a^2\left(b-c\right)-b^2\left(a-c\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(\Leftrightarrow A=\frac{a^2\left(b-c\right)-b^2\left[\left(b-c\right)+\left(a-b\right)\right]+c^2\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(\Leftrightarrow A=\frac{a^2\left(b-c\right)-b^2\left(b-c\right)-b^2\left(a-b\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(\Leftrightarrow A=\frac{\left(a^2-b^2\right)\left(b-c\right)-\left(b^2-c^2\right)\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(\Leftrightarrow A=\frac{\left(a+b\right)\left(a-b\right)\left(b-c\right)-\left(b+c\right)\left(b-c\right)\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(\Leftrightarrow A=\frac{\left(a-b\right)\left(b-c\right)\left[\left(a+b\right)-\left(b+c\right)\right]}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(\Leftrightarrow A=\frac{\left(a-b\right)\left(a-c\right)\left(b-c\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}=1\)
cho a,b,c đôi 1 khác nhau thoả mãn
1/a+1/b+1/c=0 . tính giá trị biểu thức
Q= 1/a^2+2bc+1/b^2+2ac+1/c^2+2ab+2012
cho các số a,b,c thỏa mãn điều kiện ab+bc+ca=1. Tính giá trị nhỏ nhất của biểu thức:
\(\left(a^2+2bc-1\right)\left(b^2+2ac-1\right)\left(c^2+2ab-1\right)\)
cho a+b+c=1/2 và (a+b)(b+c)(a+c) khác 0.tính giá trị của biểu thức
P=(2ac+b)/(a+c)2.(2ab+c)/(a+b)2.(2bc+a)/(b+c)2