Tính G = 1.3 + 4.5 + 5.7 +.....+ 2017.2019 + 2019.2010
(thách ai làm đc )
Tính 1/1.3+1/3.5+1/5.7+.......1/2017.2019
=1/2(2/1*3+2/3*5+...+2/2017*2019)
=1/2(1-1/3+1/3-1/5+...+1/2017-1/2019)
=1/2*2018/2019
=1009/2019
=1/2(2/1x3+2/3x5+...+2/2017x2019)
=1/2(1-1/3+1/3-1/5+...+1/2017-1/2019)
=1/2x2018/2019
=1008/2019
Tính: S= 1/1.3 + 1/3.5 +1/5.7 + .....+ 1/2017.2019
\(2.S=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2017.2019}\)
\(=\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{2019-2017}{2017.2019}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}\)
\(=1-\frac{1}{2019}=\frac{2018}{2019}\)
=> \(S=\frac{1009}{2019}\)
Tính: S= 1/1.3 + 1/3.5 +1/5.7 + 1009/2019 .....+ 1/2017.2019
Trả lời:
1009/2019
Tính tổng S=1/1.3+1/3.5+1/5.7+...+1/2017.2019
Cố gắng lên (tự nhủ)
\(S=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2017.2019}\)
\(2S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}\)
\(2S=1-\frac{1}{2019}=\frac{2018}{2019}\)
\(S=\frac{1009}{2019}\)
Tính tổng:
1/1.3+1/3.5+1/5.7+....+1/2017.2019
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2017.2019}\)
\(=1-\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+..+\frac{1}{2017}-\frac{1}{2019}\div2\)
\(=\left(1-\frac{1}{2019}\right)\div2\)
\(=\frac{2018}{2019}\div2\)
\(=\frac{1009}{2019}\)
Đặt \(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2017.2019}\)
\(2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2017.2019}\)
\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}\)
\(2A=1-\frac{1}{2017}\)
\(2A=\frac{2016}{2017}\)
\(A=\frac{2016}{2017}:2\)
\(A=\frac{1008}{2017}\)
Tính tổng sau một cách hợp lí :
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2017.2019}\)
Làm được t tick
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{1017.2019}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}\)
\(=1-\frac{1}{2019}\)
\(=\frac{2018}{2019}\)
\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+....+\frac{2}{2017\cdot2019}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}\)
\(=1-\frac{1}{2019}=\frac{2018}{2019}\)
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2017.2019}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}\)
\(=1-\frac{1}{2019}\)
\(=\frac{2019}{2019}-\frac{1}{2019}\)
\(=\frac{2018}{2019}\)
Tính giá trị cảu biểu thức A=1/1.3+1/3.5+1/5.7+1/7.9+...+1/2017.2019
A = 1/1.3 + 1/3.5 + 1/5.7 + ... + 1/2017.2019
A = 1/2 (1 - 1/3 + 1/3 - 1/5 + 1/5 - ... - 1/2019)
A = 1/2 (1 - 1/2019)
A = 1/2 . 2018/2019
A = 1009/2019
@Cỏ
\(A=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{2017\cdot2019}\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2017}-\frac{1}{2019}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{2019}\right)=\frac{1}{2}\cdot\frac{2018}{2019}\)
\(=\frac{1009}{2019}\)
\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2017.2019}\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{2019}\right)=\frac{1}{2}.\frac{2018}{2019}=\frac{1009}{2019}\)
Tính A= 1 phần 1.3+1 phần 3.5 + 1 phần 5.7+.......+1 phần 2017.2019
A=1/1*3+1/3*5+...+1/2017*2019
2A=2/1*3+2/3*5+...+2/2017*2019
2A=1-1/3+1/3-1/5+..+1/2017-1/2019
2A=1-1/2019
2A=2018/2019
A=(2018/2019):2
A=1009/2019
\(A=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{2017.2019}\)
\(A=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{2017.2019}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2017}-\frac{1}{2019}\right)\)
\(A=\frac{1}{2}.\left(1-\frac{1}{2019}\right)\)
\(A=\frac{1}{2}.\frac{2018}{2019}\)
\(A=\frac{1009}{2019}\)
\(A= {1.3 \over 3.5}+{2.4 \over 5.7}+{3.5 \over 7.9}+...+{1008.1010 \over 2017.2019} \)
Tính A
Tính tổng : \(S1=\frac{15}{1.3}+\frac{15}{3.5}+\frac{15}{5.7}+......+\frac{15}{2017.2019}\)
Giúp mik với ạ !!!
Bài làm
\(S_1=\frac{15}{1.3}+\frac{15}{3.5}+\frac{15}{5.7}+...+\frac{15}{2017.2019}\)
\(S_1=15.\frac{1}{1.3}+15.\frac{1}{3.5}+15.\frac{1}{5.7}+...+15.\frac{1}{2017.2019}\)
\(S_1=15.\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2017.2019}\right)\)
\(S_1=15.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}\right)\)
\(S_1=15.\left(1-\frac{1}{2019}\right)\)
\(S_1=15.\left(\frac{2019}{2019}-\frac{1}{2019}\right)\)
\(S_1=15.\frac{2018}{2019}\)
\(S_1=\frac{2018}{673}\)
# Chúc bạn học tốt #
Bài làm
Chắc zậy, không chắc nữa.
~ Sai thì thôi nha ~
# Học tốt #
\(S1=\frac{15}{1.3}+\frac{15}{3.5}+\frac{15}{5.7}+...+\frac{15}{2017.2019}\)
\(S1=\frac{15}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2017.2019}\right)\)
\(S1=\frac{15}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}\right)\)
\(S1=\frac{15}{2}.\left(1-\frac{1}{2019}\right)\)
\(S1=\frac{15}{2}.\frac{2018}{2019}\)
\(S1=\frac{5045}{673}\)