Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mai Tiến Đỗ
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 12 2020 lúc 16:58

a.

ĐKXĐ: \(x\ge1\)

\(\sqrt{x-1}+\sqrt{x^3+x^2+x+1}=1+\sqrt{\left(x-1\right)\left(x^3+x^2+x+1\right)}\)

\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x^3+x^2+x+1}-1\right)-\left(\sqrt{x^3+x^2+x+1}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(\sqrt{x^3+x^2+x+1}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{x^3+x^2+x+1}=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x^3+x^2+x=0\end{matrix}\right.\)

\(\Leftrightarrow...\)

Nguyễn Việt Lâm
13 tháng 12 2020 lúc 16:58

b.

ĐKXĐ: \(x\ge-1\)

\(x^2-6x+9+x+1-4\sqrt{x+1}+4=0\)

\(\Leftrightarrow\left(x-3\right)^2+\left(\sqrt{x+1}-2\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\\sqrt{x+1}-2=0\end{matrix}\right.\)

\(\Leftrightarrow x=3\)

c.

ĐKXĐ: \(-2\le x\le\dfrac{4}{5}\)

\(VT=2x+3\sqrt{4-5x}+1.\sqrt{x+2}\)

\(VT\le2x+\dfrac{1}{2}\left(9+4-5x\right)+\dfrac{1}{2}\left(1+x+2\right)=8\)

Dấu "=" xảy ra khi và chỉ khi \(x=-1\)

Nguyễn Việt Lâm
13 tháng 12 2020 lúc 16:58

d.

ĐKXĐ: \(x>1\)

\(\Leftrightarrow\dfrac{x^2+x+1-1}{\sqrt{x^2+x+1}}=\dfrac{1-\left(x-1\right)}{\sqrt{x-1}}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+x+1}=a>0\\\sqrt{x-1}=b>0\end{matrix}\right.\)

\(\Rightarrow\dfrac{a^2-1}{a}=\dfrac{1-b^2}{b}\)

\(\Leftrightarrow a-\dfrac{1}{a}=\dfrac{1}{b}-b\)

\(\Leftrightarrow a+b-\dfrac{a+b}{ab}=0\)

\(\Leftrightarrow\left(a+b\right)\left(1-\dfrac{1}{ab}\right)=0\)

\(\Leftrightarrow1-\dfrac{1}{ab}=0\)

\(\Leftrightarrow ab=1\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)=1\)

\(\Leftrightarrow x^3-1=1\)

\(\Leftrightarrow x=\sqrt[3]{2}\)

Ko cần bít
Xem chi tiết
Shinichi Kudo
8 tháng 7 2018 lúc 20:27

Trả lời

x2−5x+14≐(x−3)2+x+5≥x+5≥x+1+4≥4x+1" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:14px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-wrap:normal" class="MathJax_CHTML mjx-chtml">Ta có: \(x^2-5x+14=\left(x-3\right)^2+x+5\ge x+5\ge x+1+4\ge4\sqrt{x+1}\)x2−5x+14≐(x−3)2+x+5≥x+5≥x+1+4≥4x+1" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:14px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-wrap:normal" class="MathJax_CHTML mjx-chtml">\(\Rightarrow VT\ge VP\)x2−5x+14≐(x−3)2+x+5≥x+5≥x+1+4≥4x+1" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:14px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-wrap:normal" class="MathJax_CHTML mjx-chtml">Vậy để \(VT\ge VP\Leftrightarrow x=3\)(dấu "=" xảy ra)   
Thu Trần Thị
Xem chi tiết
Thắng Nguyễn
3 tháng 1 2017 lúc 18:02

Đk:\(x\ge-1\)

\(pt\Leftrightarrow x^2-6x+9+x+1-4\sqrt{x+1}+4=0\)

\(\Leftrightarrow\left(x-3\right)^2+\left(\sqrt{x+1}-2\right)^2=0\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x-3\right)^2=0\\\left(\sqrt{x+1}-2\right)^2=0\end{cases}}\)\(\Leftrightarrow x=3\)

Ta Sagi
Xem chi tiết
Nyatmax
16 tháng 10 2019 lúc 17:58

2.

\(DK:\hept{\begin{cases}x\ge-\frac{1}{5}\\x\ne0\end{cases}}\)

PT

\(\Leftrightarrow6+3\sqrt{5x+1}\left(\sqrt{5x+1}-1\right)=14\left(\sqrt{5x+1}-1\right)\)

\(\Leftrightarrow15x+23-17\sqrt{5x+1}=0\)

\(\Leftrightarrow\left(68-17\sqrt{5x+1}\right)+\left(15x-45\right)=0\)

\(\Leftrightarrow\frac{17\left(x-3\right)}{4+\sqrt{5x+1}}+15\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{17}{4+\sqrt{5x+1}}+15\right)=0\)

Vi \(\frac{17}{4+\sqrt{5x+1}}+15>0\)

\(\Rightarrow x=3\left(n\right)\)

Vay nghiem cua PT la \(x=3\)

Limited Edition
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 9 2020 lúc 16:06

a/ ĐKXĐ: \(x\ge2\)

\(\Leftrightarrow\sqrt{x+1}=1+\sqrt{x-2}\)

\(\Leftrightarrow x+1=1+x-2+2\sqrt{x-2}\)

\(\Leftrightarrow\sqrt{x-2}=1\)

\(\Leftrightarrow x=3\)

b/ ĐKXĐ: \(x^2\ge2\)

Đặt \(\sqrt{x^2-2}=t\ge0\Rightarrow x^2=t^2+2\)

Pt trở thành: \(t^2+2-t=4\)

\(\Leftrightarrow t^2-t-2=0\Rightarrow\left[{}\begin{matrix}t=-1\left(l\right)\\t=2\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2-2}=2\Leftrightarrow x^2=6\Rightarrow x=\pm\sqrt{6}\)

Nguyễn Việt Lâm
1 tháng 9 2020 lúc 16:08

c/

\(\Leftrightarrow\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+9}=5-\left(x+1\right)^2\)

Do \(\left(x+1\right)^2\ge0\) ;\(\forall x\)

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{3\left(x+1\right)^2+4}\ge\sqrt{0+4}=2\\\sqrt{5\left(x+1\right)^2+9}\ge\sqrt{0+9}=3\end{matrix}\right.\)

\(\Rightarrow VT\ge5\)

\(VP=5-\left(x+1\right)^2\le5\)

\(\Rightarrow VT\ge VP\)

Dấu "=" xảy ra khi và chỉ khi: \(\left(x+1\right)^2=0\Leftrightarrow x=-1\)

Kimian Hajan Ruventaren
Xem chi tiết
Hồng Phúc
22 tháng 12 2020 lúc 19:45

Tham khảo:

Giải pt: \(\sqrt{x-2} \sqrt{4-x}=2x^2-5x-1\) - Hoc24

Dương Thị Thu Hiền
Xem chi tiết
Akai Haruma
28 tháng 11 2021 lúc 0:17

Lời giải:

1. ĐKXĐ: $x\geq \frac{-5+\sqrt{21}}{2}$

PT $\Leftrightarrow x^2+5x+1=x+1$

$\Leftrightarrow x^2+4x=0$

$\Leftrightarrow x(x+4)=0$

$\Rightarrow x=0$ hoặc $x=-4$

Kết hợp đkxđ suy ra $x=0$

2. ĐKXĐ: $x\leq 2$

PT $\Leftrightarrow x^2+2x+4=2-x$

$\Leftrightarrow x^2+3x+2=0$

$\Leftrightarrow (x+1)(x+2)=0$

$\Leftrightarrow x+1=0$ hoặc $x+2=0$

$\Leftrightarrow x=-1$ hoặc $x=-2$
3.

ĐKXĐ: $-2\leq x\leq 2$

PT $\Leftrightarrow \sqrt{2x+4}=\sqrt{2-x}$

$\Leftrightarrow 2x+4=2-x$

$\Leftrightarrow 3x=-2$

$\Leftrightarrow x=\frac{-2}{3}$ (tm)

 

Nguyễn An
Xem chi tiết
NTL 101
Xem chi tiết
Akai Haruma
19 tháng 12 2021 lúc 0:16

Bạn tham khảo lời giải tại đây:

https://hoc24.vn/cau-hoi/giai-pt-sqrtx-2sqrt4-x2x2-5x-1.219493072549