chưng minh rằng : nếu số tự nhiên abc chia hết cho 37 thì các số bca và cab cũng chia hết cho 37
Chứng minh rằng: nếu số tự nhiên abc chia hết cho 37 thì các số bca và cab cũng chia hết cho 37 ?
(abc) chia hết cho 37=> 100.a + 10.b + c chia hết cho 37
=> 1000.a + 100.b + 10.c chia hết cho 37
=> 1000.a - 999.a + 100.b + 10.c chia hết cho 37 (vì 999.a chia hết cho 37)
=> 100.b + 10.c + a = (bca) chia hết cho 37
(abc) chia hết cho 37 ---> 100.a + 10.b + c chia hết cho 37
---> 1000.a + 100.b + 10.c chia hết cho 37
---> 1000.a - 999.a + 100.b + 10.c chia hết cho 37 (vì 999.a chia hết cho 37)
---> 100.b + 10.c + a = (bca) chia hết cho 37
(bca) chia hết cho 37 ---> 100.b+10.c+a chia hết cho 37
---> 1000.b + 100.c + 10.a chia hết cho 37
---> 1000.b - 999.b + 100.c + 10.a chia hết cho 37 (vì 999.b chia hết cho 37)
---> 100.c + 10.a + b = (cab) chia hết cho 37
C/minh:abc chia hết cho 37 thì cab và bca cũng chia hết cho 37
( abc ,cab , bca là các số tự nhiên )
Chứng minh rằng mỗi số tự nhiên abc chia hết cho 37 thì các số bca và cab chia hết cho 37.
Số (abc) chia hết cho 37 => 100a + 10b + c chia hết cho 37 =>(Nhân 10 vô) 1000a + 100b + 10c chia hết cho 37 (1). Trừ cho 999a thì (1) vẫn chia hết cho 37 do 999 chia hết cho 37 từ đó suy ra đpcm!
chứng minh rằng : nếu số tự nhiên abc chia hết cho 37 thì các số : bca và cab cũng chia hết cho 37
(abc) chia hết cho 37 ---> 100.a + 10.b + c chia hết cho 37
---> 1000.a + 100.b + 10.c chia hết cho 37
---> 1000.a - 999.a + 100.b + 10.c chia hết cho 37 (vì 999.a chia hết cho 37)
---> 100.b + 10.c + a = (bca) chia hết cho 37
(bca) chia hết cho 37 ---> 100.b+10.c+a chia hết cho 37
---> 1000.b + 100.c + 10.a chia hết cho 37
---> 1000.b - 999.b + 100.c + 10.a chia hết cho 37 (vì 999.b chia hết cho 37)
---> 100.c + 10.a + b = (cab) chia hết cho 37
(abc) chia hết cho 37 ---> 100.a + 10.b + c chia hết cho 37
---> 1000.a + 100.b + 10.c chia hết cho 37
---> 1000.a - 999.a + 100.b + 10.c chia hết cho 37 (vì 999.a chia hết cho 37)
---> 100.b + 10.c + a = (bca) chia hết cho 37
(bca) chia hết cho 37 ---> 100.b+10.c+a chia hết cho 37
---> 1000.b + 100.c + 10.a chia hết cho 37
---> 1000.b - 999.b + 100.c + 10.a chia hết cho 37 (vì 999.b chia hết cho 37)
---> 100.c + 10.a + b = (cab) chia hết cho 37
Chứng minh nếu số tự nhiên abc chia hết cho 37 thì bca và cab cũng chia hết cho 37 .
+Ta có : abc +11.bca = 111a+1110b+111c =37.3(a+10b+c) chia hết cho 37
mà abc chia hêt cho 37 => 11.bca chia hết cho 37 => bca chia hết cho 37 ( vì 11 không chia hết cho 37) (1)
+ tương tự bca +11.cab =111b +1110c+111a = 37.3.(b+10c+a) chia hết cho 37
mà bca chia hết cho 37 => 11.cab chia hết cho 37 => cab chia hết cho 37 (2)
(1)(2) => dpcm
Cho abc ,bca, cab là các số tự nhiên có 3 chữ số.
Chứng minh rằng nếu abc chia hết cho 37 thì bca và cab cũng chia hết cho 37.
nếu số tự nhiên abc chia hết cho 37 thì các số và cab cũng chia hết cho 37 ?
chứng tỏ rằng nếu abc chia hết cho 37 thì bca và cab cũng chia hết cho 37
Tham khảo câu hỏi tương tự nha bạn
CHÚC BẠN HỌC TỐT NHA !
Chứng minh rằng số tự nhiên có 3 chữ số là \(\overline{abc}\) và \(\overline{cab}\)chia hết cho 37 thì số \(\overline{bca}\) cũng chia hết cho 37