Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Linh
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 12 2020 lúc 22:11

ĐKXĐ: \(x\ge0\)

\(\left(x^2-x-m\right)\sqrt{x}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-x-m=0\left(1\right)\end{matrix}\right.\)

Giả sử (1) có nghiệm thì theo Viet ta có \(x_1+x_2=1>0\Rightarrow\left(1\right)\) luôn có ít nhất 1 nghiệm dương nếu có nghiệm

Do đó:

a. Để pt có 1 nghiệm \(\Leftrightarrow\left(1\right)\) vô nghiệm 

\(\Leftrightarrow\Delta=1+4m< 0\Leftrightarrow m< -\dfrac{1}{4}\)

b. Để pt có 2 nghiệm pb 

TH1: (1) có 1 nghiệm dương và 1 nghiệm bằng 0

\(\Leftrightarrow m=0\)

TH2: (1) có 2 nghiệm trái dấu

\(\Leftrightarrow x_1x_2=-m< 0\Leftrightarrow m>0\)

\(\Rightarrow m\ge0\)

c. Để pt có 3 nghiệm pb \(\Leftrightarrow\) (1) có 2 nghiệm dương pb

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=1+4m>0\\x_1x_2=-m>0\\\end{matrix}\right.\) \(\Leftrightarrow-\dfrac{1}{4}< m< 0\)

Phạm Tuân
Xem chi tiết
Nguyễn Ngân
Xem chi tiết
𝓓𝓾𝔂 𝓐𝓷𝓱
12 tháng 6 2021 lúc 22:46

bạn xem lại biểu thức trong đề bài 

Vũ Thị Minh Ngọc
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 5 2023 lúc 7:53

(x1-1)(x2^2-5x2+m-4)=0

=>x1=1 và x2^2-x2(x1+x2-1)+x1x2+1=0

=>x1=1 và x2^2-x2x1-x2^2+x2+x1x2+1=0

=>x1=1 và x2=-1

x1*x2=m-3

=>m-3=-1

=>m=2

Chung Vũ
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 4 2023 lúc 19:41

Phương trình có 2 nghiệm pb khi:

\(\Delta'=\left(m+1\right)^2-\left(m^2+4\right)>0\)

\(\Leftrightarrow2m-3>0\)

\(\Leftrightarrow m>\dfrac{3}{2}\)

Sukem tv cute
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 3 2023 lúc 22:39

a. Em tự giải

b. Pt có 2 nghiệm khi \(\Delta=9-4\left(m-4\right)\ge0\Rightarrow m\le\dfrac{25}{4}\)

Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1x_2=m-4\end{matrix}\right.\)

c.

\(x_1^3+x_2^3=8\)

\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=8\)

\(\Leftrightarrow\left(-3\right)^3-3.\left(-3\right).\left(m-4\right)=8\)

\(\Leftrightarrow m=\dfrac{71}{9}\)

Khánh Ngọc
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 5 2023 lúc 20:23

Δ=(2m+5)^2-4(-2m-6)

=4m^2+20m+25+8m+24

=4m^2+28m+49

=(2m+7)^2>=0

Để phương trình có hai nghiệm phân biệt thì 2m+7<>0

=>m<>-7/2

|x1|+|x2|=7

=>x1^2+x2^2+2|x1x2|=49

=>(x1+x2)^2-2x1x2+2|x1x2|=49

=>(2m+5)^2-2(-2m-6)+2|2m+6|=49

=>4m^2+20m+25+4m+12+2|2m+6|=49

=>4m^2+24m-12+4|m+3|=0

TH1: m>=-3

=>4m^2+24m-12+4m+12=0

=>4m^2+28m=0

=>m=0(nhận) hoặc m=-7(loại)

TH2: m<-3

=>4m^2+24m-12-4m-12=0

=>4m^2+20m-24=0

=>m^2+5m-6=0

=>m=-6(nhận) hoặc m=-1(loại)

Hoàng Anh Ngô
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 3 2021 lúc 18:58

\(ac=-6< 0\Rightarrow\) phương trình đã cho luôn luôn có 2 nghiệm pb (trái dấu)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-2\\x_1x_2=-6\end{matrix}\right.\)

Thế vào đề bài:

\(m-2-3\left(-6\right)=0\)

\(\Leftrightarrow m+16=0\Leftrightarrow m=-16\)

ひまわり(In my personal...
24 tháng 3 2021 lúc 19:10

\(x^2-\left(m-2\right)x-6=0\left(1\right)\)

\(\Rightarrow\Delta=b^2-4ac=\left[-\left(m-2\right)\right]^2-4.\left(-6\right)\)

\(=m^2-4m+4+24=m^2-4m+28\)

\(=\left(m-2\right)^2+24\)

Thấy \(\left(m-2\right)^2\ge0\)\(\Rightarrow\left(m-2\right)^2+24>0\forall m\)

Vậy phương trình luân có 2 nghiệm phân biệt \(x_1,x_2\)

Áp dụng \(Vi-ét \) ta có :

\(S=x_1+x_2=\dfrac{-b}{a}=m-2\)

\(P=x_1.x_2=\dfrac{c}{a}=-6\)

Ta có \(x_1+x_2-3.x_1.x_2=0\)

\(\Leftrightarrow m-2-3.\left(-6\right)=0\Rightarrow m=-16\)

Ngân Lê
Xem chi tiết
Trần Ái Linh
16 tháng 6 2021 lúc 12:33

PT có 2 nghiệm phân biệt `<=> \Delta>0`

`<=>3^2-4m>0`

`<=>m<9/4`

Viet: 

`x_1+x_2=-3` (1)

`x_1x_2=m` (2)

Theo đề: `x_2=2x_1 <=> 2x_1-x_2=0` (3)

Từ (1) và (3) ta có hệ: \(\left\{{}\begin{matrix}x_1+x_2=-3\\2x_1-x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=-1\\x_2=-2\end{matrix}\right.\)

Thay vào (2): `(-1).(-2) = m <=> m=2`

Sumi
Xem chi tiết
Akai Haruma
2 tháng 5 2023 lúc 15:08

Lời giải:

** Bổ sung điều kiện $m$ nguyên.
Để pt có 2 nghiệm nguyên phân biệt thì $\Delta=(m-1)^2+16=a^2$ với $a\in\mathbb{Z}\neq 0$

$\Leftrightarrow 16=a^2-(m-1)^2=(a-m+1)(a+m-1)$

Vì $a-m+1, a+m-1$ là số nguyên và $a-m+1, a+m-1$ cùng tính chẵn lẻ nên ta có các TH:

$(a-m+1, a+m-1)=(2,8),(8,2), (-2,-8),(-8,-2), (4,4), (-4,-4)$

$\Leftrightarrow m\in\left\{4; -2; 1\right\}$