Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Duy Minh
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 10 2021 lúc 12:57

\(A=\dfrac{\dfrac{sina}{cosa}+\dfrac{cosa}{cosa}}{\dfrac{sina}{cosa}-\dfrac{cosa}{cosa}}=\dfrac{tana+1}{tana-1}=\dfrac{\sqrt{3}+1}{\sqrt{3}-1}=2+\sqrt{3}\)

trần đông tường
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 11 2019 lúc 7:00

\(A=\frac{\frac{3sina}{cosa}+\frac{2cosa}{cosa}}{\frac{3sina}{cosa}-\frac{2cosa}{cosa}}=\frac{3tana+2}{3tana-2}=\frac{24+2}{24-2}=\frac{26}{22}=\frac{13}{11}\)

Khách vãng lai đã xóa
Buddy
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 7 2023 lúc 0:02

a: pi/2<a<pi

=>sin a>0

\(sina=\sqrt{1-\left(-\dfrac{1}{\sqrt{3}}\right)^2}=\dfrac{\sqrt{2}}{\sqrt{3}}\)

\(sin\left(a+\dfrac{pi}{6}\right)=sina\cdot cos\left(\dfrac{pi}{6}\right)+sin\left(\dfrac{pi}{6}\right)\cdot cosa\)

\(=\dfrac{\sqrt{3}}{2}\cdot\dfrac{\sqrt{2}}{\sqrt{3}}+\dfrac{1}{2}\cdot-\dfrac{1}{\sqrt{3}}=\dfrac{\sqrt{6}-2}{2\sqrt{3}}\)

b: \(cos\left(a+\dfrac{pi}{6}\right)=cosa\cdot cos\left(\dfrac{pi}{6}\right)-sina\cdot sin\left(\dfrac{pi}{6}\right)\)

\(=\dfrac{-1}{\sqrt{3}}\cdot\dfrac{\sqrt{3}}{2}-\dfrac{\sqrt{2}}{\sqrt{3}}\cdot\dfrac{1}{2}=\dfrac{-\sqrt{3}-\sqrt{2}}{2\sqrt{3}}\)

c: \(sin\left(a-\dfrac{pi}{3}\right)\)

\(=sina\cdot cos\left(\dfrac{pi}{3}\right)-cosa\cdot sin\left(\dfrac{pi}{3}\right)\)

\(=\dfrac{\sqrt{2}}{\sqrt{3}}\cdot\dfrac{1}{2}+\dfrac{1}{\sqrt{3}}\cdot\dfrac{\sqrt{3}}{2}=\dfrac{\sqrt{2}+\sqrt{3}}{2\sqrt{3}}\)

d: \(cos\left(a-\dfrac{pi}{6}\right)\)

\(=cosa\cdot cos\left(\dfrac{pi}{6}\right)+sina\cdot sin\left(\dfrac{pi}{6}\right)\)

\(=\dfrac{-1}{\sqrt{3}}\cdot\dfrac{\sqrt{3}}{2}+\dfrac{\sqrt{2}}{\sqrt{3}}\cdot\dfrac{1}{2}=\dfrac{-\sqrt{3}+\sqrt{2}}{2\sqrt{3}}\)

Min YoongMin
Xem chi tiết
Mất nick đau lòng con qu...
5 tháng 7 2019 lúc 11:22

\(A=\left(\sin\alpha+\cos\alpha+\sin\alpha-\cos\alpha\right)^2-2\left(\sin\alpha+\cos\alpha\right)\left(\sin\alpha-\cos\alpha\right)\)

\(=4\sin^2\alpha-2\sin^2\alpha+2\cos^2\alpha=2\left(\sin^2\alpha+\cos^2\alpha\right)=2\)

\(B=\sin^4\alpha+\cos^4\alpha+2\sin^2\alpha.\cos^2\alpha\left(\sin^2\alpha+\cos^2\alpha\right)=\sin^4\alpha+\cos^4\alpha+2\sin^2\alpha.\cos^2\alpha\)

\(=\left(\sin^2\alpha+\cos^2\alpha\right)^2-1=0\)

\(C=3\left(\sin^4\alpha+\cos^4\alpha\right)-2\sin^2\alpha.\cos^2\alpha\left(\sin^2\alpha+\cos^2\alpha\right)=3\left(\sin^4\alpha+\cos^4\alpha\right)-2\sin^2\alpha.\cos^2\alpha\)

\(=3\left(\sin^2\alpha+\cos^2\alpha-\frac{1}{9}\right)^2-\frac{1}{9}=\frac{61}{27}\)

Trần Huỳnh Như
Xem chi tiết
Hoàng Lê Bảo Ngọc
17 tháng 8 2016 lúc 17:23

a/ \(A=\left(sin\alpha+cos\alpha\right)^2+\left(sin\alpha-cos\alpha\right)^2=2\left(sin^2\alpha+cos^2\alpha\right)=2\)

b/ \(B=\left(1+tan^2\alpha\right)\left(1-sin^2\alpha\right)-\left(1+cotg^2\alpha\right)\left(1-cos^2\alpha\right)\)

\(=\left(1+\frac{sin^2\alpha}{cos^2\alpha}\right)\left(1-sin^2\alpha\right)-\left(1+\frac{cos^2\alpha}{sin^2\alpha}\right)\left(1-cos^2\alpha\right)\)

\(=\frac{1}{cos^2\alpha}.cos^2\alpha-\frac{1}{sin^2\alpha}.sin^2\alpha=1-1=0\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 4 2018 lúc 14:15

Chọn D.

Ta có ( sinα - cosα) 2 + (sinα + cosα) 2 = 2( sin2α +  cos2α)  = 2.

Suy ra (sinα - cosα) 2 = 2 - ( sinα + cos α) 2 = 2 - 5/4 = 3/4.

Do  suy ra sinα < cosα  nên sinα - cosα <  0.

Vậy 

nguyễn nam
Xem chi tiết
ngoc
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 9 2020 lúc 17:22

\(\frac{1-tana}{1+tana}=\frac{1-\frac{sina}{cosa}}{1+\frac{sina}{cosa}}=\frac{\frac{1}{cosa}\left(cosa-sina\right)}{\frac{1}{cosa}\left(cosa+sina\right)}=\frac{cosa-sina}{cosa+sina}\)

tamanh nguyen
Xem chi tiết