giải pt
\(\sqrt{2x^2-9x+4}-3\sqrt{2x-1}=\sqrt{2x^2+21x-11}\)
Giải PT: \(\sqrt{2x^2-9x+4}+3\sqrt{2x-1}=\sqrt{2x^2+21x-11}\)
\(ĐK:\left\{{}\begin{matrix}x\le\dfrac{1}{2};4\le x\\\dfrac{1}{2}\le x\\x\le-11;\dfrac{1}{2}\le x\end{matrix}\right.\Leftrightarrow x\le-11;4\le x\)
\(PT\Leftrightarrow\sqrt{\left(x-4\right)\left(2x-1\right)}+3\sqrt{2x-1}-\sqrt{\left(2x-1\right)\left(x+11\right)}=0\\ \Leftrightarrow\sqrt{2x-1}\left(\sqrt{x-4}-\sqrt{x+11}+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x-1=0\\\sqrt{x-4}-\sqrt{x+11}=-3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\left(tm\right)\\x-4+x+11-2\sqrt{x^2+7x-44}=9\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow2\sqrt{x^2+7x-44}=2x-2\\ \Leftrightarrow\sqrt{x^2+7x-44}=x-1\\ \Leftrightarrow x^2+7x-44=x^2-2x+1\\ \Leftrightarrow9x=45\Leftrightarrow x=5\left(tm\right)\)
Vậy \(S=\left\{\dfrac{1}{2};5\right\}\)
Giải PT: \(\sqrt{2x^2-9x+4}+3\sqrt{2x-1}=\sqrt{2x^2+21x-11}\)
https://hoc24.vn/cau-hoi/giai-pt-sqrt2x2-9x43sqrt2x-1sqrt2x221x-11.2005877637936
làm r nha :vv
Giải PT :
\(\sqrt{2x^2-9x+4}+3\sqrt{2x-1}=\sqrt{2x^2+21x-11}\)
2x2 - 9x + 4 = 2x2 - 8x - x + 4 = (2x -1).(x - 4)
2x2 + 21x - 11 = 2x2 + 22x - x - 11 = (2x -1).(x + 11)
Điều kiện: x \(\ge\) 4
PT <=> \(\sqrt{\left(2x-1\right)\left(x-4\right)}+3\sqrt{2x-1}=\sqrt{\left(2x-1\right)\left(x+11\right)}\)
<=> \(\sqrt{2x-1}\left(\sqrt{x-4}+3-\sqrt{x+11}\right)=0\)
<=> \(\sqrt{2x-1}=0\) (1) hoặc \(\sqrt{x-4}-\sqrt{x+11}+3=0\) (2)
Giải (1) <=> x = 1/2 (Loại)
Giải (2) <=> \(\left(\sqrt{x-4}+3\right)^2=\left(\sqrt{x+11}\right)^2\)
<=> \(x-4+3+6\sqrt{x-4}=x+11\)
<=> \(\sqrt{x-4}=2\) <=> x = 8 (Thỏa mãn)
vậy x = 8
giải pt vô tỉ:
\(\sqrt{2x^2-9x+4}+3\sqrt{2x-1}=\sqrt{2x^2+21x-11}\)
\(\Leftrightarrow\sqrt{\left(2x-1\right)\left(x-4\right)}+3\sqrt{2x-1}=\sqrt{\left(2x-1\right)\left(x+11\right)}\)
ĐK \(x\ge\dfrac{1}{2}\)
\(\Leftrightarrow\sqrt{\left(2x-1\right)\left(x-4\right)}+3\sqrt{2x-1}-\sqrt{\left(2x-1\right)\left(x+11\right)}=0\)
\(\Leftrightarrow\sqrt{2x-1}\left(\sqrt{x-4}+3-\sqrt{x+11}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\left(nh\right)\\\sqrt{x-4}+3=\sqrt{x+11}\end{matrix}\right.\)
\(\Leftrightarrow\left(\sqrt{x-4}+3\right)^2=x+11\)
\(\Leftrightarrow x+5+6\sqrt{x-4}=x+11\)
\(\Leftrightarrow x+5+6\sqrt{x-4}=x+11\)
\(\Leftrightarrow\sqrt{x-4}=1\)
\(\Leftrightarrow x=5\left(nh\right)\)
vậy \(S=\left\{\dfrac{1}{2};5\right\}\)
Giai pt ;\(\sqrt{2x^2-9x+4}+3\sqrt{2x-1}=\sqrt{2x^2+21x-11}\)
bài này đâu phải của lớp 1 đâu?!!
HAPPY NEW YEAR ^-^
Giải phương trình \(\sqrt{2x^2-9x+4}+3\sqrt{2x-1}=\sqrt{2x^2+21x-11}\)
đặt \(\sqrt{2x^2+21x-11}=a\) và \(\sqrt{2x^2-9x+4}=b\)
==> \(a^2-b^2=30x-15\)
<=> \(\frac{a^2-b^2}{15}=2x-1\)
do đó pt đầu tên trở thành
\(b+3\sqrt{\frac{a^2-b^2}{15}}=a\)
<=> \(\sqrt{\frac{a^2-b^2}{15}}=\frac{a-b}{3}\)
<=> \(\frac{a^2-b^2}{15}=\frac{a^2-2ab+b^2}{9}\)
<-=> \(9a^2-9b^2=15a^2-30ab+15b^2\)
<=> \(6a^2-30ab+24b^2=0\)
<=> \(a^2-5ab+4b^2=0\)
<=> \(\left(a-b\right)\left(a-4b\right)=0\)
<=> \(\orbr{\begin{cases}a=b\\a=4b\end{cases}}\)
đến đây bạn tự thay a;b vào rùi giải nốt nhé
giải phương trình:\(\sqrt{2x^2-9x+4}+3\sqrt{2x-1}=\sqrt{2x^2+21x-11}\)
Giải phương trình :
\(\sqrt{2x^2-9x+4}+3\sqrt{2x-1}=\sqrt{2x^2+21x-11}\)
Gỉai: \(\sqrt{2x^2+21x-11}-3\sqrt{2x-1}=\sqrt{2x^2-9x+4}\)
\(\sqrt{2x^2+21x-11}-3\sqrt{2x-1}=\sqrt{2x^2-9x+4}\)
\(\Leftrightarrow\sqrt{\left(2x-1\right)\left(x+11\right)}-3\sqrt{2x-1}-\sqrt{\left(2x-1\right)\left(x-4\right)}=0\)
\(\Leftrightarrow\sqrt{2x-1}\left(\sqrt{x+11}-3-\sqrt{x-4}\right)=0\)
☘ Trường hợp 1:
\(\sqrt{2x-1}=0\)
⇔ 2x - 1 = 0
⇔ x = 0,5 (nhận)
☘ Trường hợp 1:
\(\sqrt{x+11}-3-\sqrt{x-4}=0\)
\(\Leftrightarrow\sqrt{x-4}+3=\sqrt{x+11}\)
\(\Leftrightarrow x-4+6\sqrt{x-4}+9=x+11\)
\(\Leftrightarrow6\sqrt{x-4}=6\)
\(\Leftrightarrow\sqrt{x-4}=1\)
⇔ x - 4 = 4
⇔ x = 5 (nhận)
☘ Vậy \(S=\left\{\dfrac{1}{2};5\right\}\)