cho a=7+7^2+7^3+...+7^2019
cmr a không chia hết cho 50
Bài 4: tìm các chữ số a,b để:
a. số 4a12b chia hết cho 2;5 và 9
b.số 5a43b chia hết cho cả 2;3 và 5
c. số 735a2b chia hết cho cả 5 và 9 nhưng không chia hết cho 2
bài 5:tổng sau có chia hết cho 8,cho 3 không
A=7+7^2+7^3+7^4+....+7^50 + 7^51
Bài 4: Để tìm các chữ số a, b thỏa mãn các điều kiện, ta sẽ kiểm tra từng trường hợp.
a. Để số 4a12b chia hết cho 2, 5 và 9, ta cần xét chữ số cuối cùng b. Vì số chia hết cho 2, nên b phải là số chẵn. Vì số chia hết cho 5, nên b phải là 0 hoặc 5. Vì số chia hết cho 9, nên tổng các chữ số trong số đó phải chia hết cho 9. Ta thử từng trường hợp:
Nếu b = 0, thì tổng các chữ số là 4 + a + 1 + 2 + 0 = 7 + a. Để 7 + a chia hết cho 9, ta có a = 2. Nếu b = 5, thì tổng các chữ số là 4 + a + 1 + 2 + 5 = 12 + a. Để 12 + a chia hết cho 9, ta có a = 6.Vậy, các giá trị thỏa mãn là a = 2 hoặc a = 6, và b = 0 hoặc b = 5.
b. Để số 5a43b chia hết cho 2, 3 và 5, ta cần xét chữ số cuối cùng b. Vì số chia hết cho 2, nên b phải là số chẵn. Vì số chia hết cho 3, nên tổng các chữ số trong số đó phải chia hết cho 3. Vì số chia hết cho 5, nên b phải là 0 hoặc 5. Ta thử từng trường hợp:
Nếu b = 0, thì tổng các chữ số là 5 + a + 4 + 3 + 0 = 12 + a. Để 12 + a chia hết cho 3, ta có a = 0 hoặc a = 3 hoặc a = 6 hoặc a = 9. Nếu b = 5, thì tổng các chữ số là 5 + a + 4 + 3 + 5 = 17 + a. Để 17 + a chia hết cho 3, ta có a = 1 hoặc a = 4 hoặc a = 7.Vậy, các giá trị thỏa mãn là a = 0 hoặc a = 3 hoặc a = 6 hoặc a = 9, và b = 0 hoặc b = 5.
c. Để số 735a2b chia hết cho 5 và 9, nhưng không chia hết cho 2, ta cần xét chữ số cuối cùng b. Vì số chia hết cho 5, nên b phải là 0 hoặc 5. Vì số chia hết cho 9, nên tổng các chữ số trong số đó phải chia hết cho 9. Ta thử từng trường hợp:
Nếu b = 0, thì tổng các chữ số là 7 + 3 + 5 + a + 2 + 0 = 17 + a. Để 17 + a chia hết cho 9, ta có a = 7 hoặc a = 8. Nếu b = 5, thì tổng các chữ số là 7 + 3 + 5 + a + 2 + 5 = 22 + a. Để 22 + a chia hết cho 9, ta có a = 2 hoặc a = 5 hoặc a = 8.Vậy, các giá trị thỏa mãn là a = 2 hoặc a = 5 hoặc a = 7 hoặc a = 8, và b = 0 hoặc b = 5.
Bài 5: Để xác định xem tổng A có chia hết cho 8 hay không, ta cần tính tổng A và kiểm tra xem nó có chia hết cho 8 hay không.
Cho A= 7+72+73+....+750. Chứng tỏ rằng A chia hết cho 50
A= 7+72+73+....+750
= (7 + 73 ) + (72 + 74) + ..... + (747 + 749) + (748 + 750)
= 7.(1 + 49) + 72.(1 + 49) + ...... + 747.(1 + 49) + 748.(1 + 49)
= 7. 50 + 72.50 + ...... + 747.50 + 748.50
= 50.( 7 + 72 + ..... +747 + 748) chai hết 50 ( đpcm)
Tìm x biết ;
a/ 18 chia hết cho x,45 chia hết cho x,3<x<6
b/ x chia hết cho 21, x chia hết cho 28,x chia hết cho 84,100<x,200
c/ x-7 chia hết cho 50;x-7 chia hết cho 100; x-7 chia hết cho 200;x nhỏ nhất :không thuộc 7
Chứng tỏ rằng : A = ( 7 + 7^2 + 7^3 + 7^4 + 7^5 + 7^6 ) chia hết cho 50
Sai đề ruj A=137256 ko thể chia hết cho 50
Chứng tỏ:
a) (10^n + 8) chia hết cho 9
b) (10^n +5^3) chia hết cho 3 và 9
c) (11^1 + 11^2 +..+ 11^8) chia hết cho 12
d)( 7 + 7^2 + 7^3 + 7^4) chia hết cho 50
A=7+72+73+74 chia hết cho 50
B=106-57 chia hết cho 59
A = ( 7 . 1 + 7 . 49 ) + ( 7 . 7 + 7 . 343 )
A = 7 . 50 + 7 . 350
A = 7 . 400
Mà 400 \(⋮\)50 → A \(⋮\)50
A=7+72+73+74 = 7( 1+ 7+ 72+73) = 7( 1 + 7 + 49 + 343) = (7+400) ko chia hết cho 5
B=106-57 = 26. 56- 57 = 56( 26- 5) = 56 . 59
Do 56.59 chia hết cho 59 => B=..... chia hết cho 59
nhầm, A= 7.400 chia hết cho 50 => A chia hết cho 50
a, Cho A = 1+2+22+23+.....+22011
Chứng minh A chia hết cho 3, chia hết cho 5
b, Cho B = 1+7+72+73+......+7101
Chứng tỏ B chia hết cho 8, chia hết cho 50
Chứng minh
a) (5-5^3) ^3/1255 = 64/25^3
b) B= 7+ 7^2 +7^3 +...+7^2019 + 7^2020 chia hết cho 50
c) C= 10^6 -5^7 chia hết cho 59
CMR:7^0+7+7^2+...+7^19+7^20 không chia hết cho 50
Ta có
70+72+71+73+74+76+75+77+.......+718+720
=(1+49)+7(1+49)+74(1+49)+......+718(1+49)
=50.(1+7+74+75+78+79+...+718) chia hết cho 50
=> DPCM
không chia hết chứ không phải là chia hết nha bạn