Cho n thuộc N, n>1:
Cm: \(n^4+4^n\) là hợp số
cho n là số tự nhiên lớn hơn 1 .CM rằng :\(n^4+4^n\) là hợp số .
https://olm.vn/hoi-dap/question/997557.html
Mk làm rồi nhé : Ấn vào đây
\(4^n⋮4\)
Nếu n=0 thì:\(4^n=4^0=1\)=> không phải là hợp số
Ta có: n>1 =>4n là hợp số
\(n^4⋮n;n>1\)=>n4 là hợp số
Vậy n4+4n là hợp số
cho 2n+1 là số nguyên tố (n thuộc N và n>2 ). CM 2n-1 là hợp số
Cho S là tập hợp các số nguyên dương n, \(n=x^2+3y^2\)với x, y là các số nguyên. CMR:
1) Nếu a,b thuộc S thì ab thuộc S
2) Nếu n thuộc S; n chia hết cho 2 thì n chia hết cho 4 và n/4 thuộc S
cho n thuộc N*, n và 10 là 2 số nguyên tố cùng nhau
CM: (n^4-1) chia hết cho 40
HELP ME!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
cho n thuộc Nvaf n>1. chứng minh n^4+4n là hợp số
Nếu n chẵn thì cái tổng chia hết cho 2
Nếu n lẻ thì
Phân tích nhân tử
Ta có : \(n^4+4^n=\left(n^2\right)^2+\left(2^n\right)^2+2n^2+2^n=\left(n^2+2^n\right)^2-n^2+2^{n+1}=\left(n^2+2^n-n.2^{\frac{n+1}{2}}\right)\left(n^2+2^n+n.2^{\frac{n+1}{2}}\right)\)
Ta chỉ cần chứng minh cả 2 thừa số đều lớn hơn 1 là được
Tức là ta chứng minh \(n^2+2^n-n.2^{\frac{n+1}{2}}\ge1\)
Tương đương với \(n^2+2^{n+1}-2n.2^{\frac{n+1}{2}}+n^2\ge2\) ( nhân 2 cho 2 vế )
\(BĐT\Rightarrow\left(n-2^{\frac{n+1}{2}}\right)^2+n^2\ge2\)đúng với n lẻ và n ≥ 3
Vậy, ta có điều phải chứng minh
cho 2n+1 là số nguyên tố (n thuộc N và n>2 ) . CM 2n-1là hợp số
đơn giản mà!
\(2^n+1\) là SNT nên \(n=2^x\) Do đó, \(2^n-1=2^{2^x}-1\)chia hết cho 3
CM : n+1 và 3.n+4 với n thuộc N là 2 số nguyên tố cùng nhau
Gọi ƯCLN ( n+1 ; 3n+4 ) = d ( d là số tự nhiên khác 0 )
=> n+1 chia hết cho d ; 3n+4 chia hết cho d
=> 3.(n+1) chia hết cho d ; 3n+4 chia hết cho d
=> 3n+3 chia hết cho d ; 3n+4 chia hết cho d
=> 3n+4 - (3n+3) chia hết cho d
=> 1 chia hết cho d
=> d= 1
=> ƯCLN ( n+1 ; 3n+4 ) = 1
=> n+1 và 3.n+4 là 2 số nguyên tố cùng nhau
1. Cho n lẽ. CMR: n2020 + 1 không phải số chính phương
2. Cho n thuộc Z. CM: A = n4 + 2n3 + 2n2 + n + 7 không phải là số chính phương
3. Cho n lẽ. CM : n3 + 1 không phải là số chính phương
1/ Xét \(\left(n^{1010}\right)^2=n^{2020}< n^{2020}+1=\left(n^{1010}+1\right)^2-2n^{1010}< \left(n^{1010}+1\right)^2\)
Vì \(n^{2020}+1\)nằm ở giữa 2 số chính phương liên tiếp là \(\left(n^{1010}\right)^2\)và \(\left(n^{1010}+1\right)^2\)nên không thể là số chính phương.
2/ Mình xin sửa đề là 1 tí đó là tìm \(n\inℤ\)để A là số chính phương nha bạn, vì A hoàn toàn có thể là số chính phương
\(A>n^4+2n^3+n^2=\left(n^2+n\right)^2,\forall n\inℤ\)
\(A< n^4+n^2+9+2n^3+6n^2+6n=\left(n^2+n+3\right)^2,\forall n\inℤ\)
Vì A bị kẹp giữa 2 số chính phương là \(\left(n^2+n\right)^2,\left(n^2+n+3\right)^2\)nên A là số chính phương khi và chỉ khi:
+) \(A=\left(n^2+n+1\right)^2\Rightarrow n^4+2n^3+2n^2+n+7=n^4+n^2+1+2n^3+2n^2+2n\)
\(\Leftrightarrow n^2+n-6=0\Leftrightarrow\orbr{\begin{cases}n=2\\n=-3\end{cases}}\)
+) \(A=\left(n^2+n+2\right)^2\Rightarrow n^4+2n^3+2n^2+n+7=n^4+n^2+4+2n^3+4n^2+4n\)
\(\Leftrightarrow3n^2+3n-3=0\Leftrightarrow x=\frac{-1\pm\sqrt{5}}{2}\notinℤ\)---> Với n=-3;2 thì A là số chính phương.
3/ Bằng phản chứng giả sử \(n^3+1\)là số chính phương:
---> Đặt: \(n^3+1=k^2,k\inℕ^∗\Rightarrow n^3=k^2-1=\left(k-1\right)\left(k+1\right)\)
Vì n lẻ nên (k-1) và (k+1) cùng lẻ ---> 2 số lẻ liên tiếp luôn nguyên tố cùng nhau
Lúc này (k-1) và (k+1) phải là lập phương của 2 số tự nhiên khác nhau
---> Đặt: \(\hept{\begin{cases}k-1=a^3\\k+1=b^3\end{cases},a,b\inℕ^∗}\)
Vì \(k+1>k-1\Rightarrow b^3>a^3\Rightarrow b>a\)---> Đặt \(b=a+c,c\ge1\)
Có \(b^3-a^3=\left(k+1\right)-\left(k-1\right)\Leftrightarrow\left(a+c\right)^3-a^3=2\Leftrightarrow3ca^2+3ac^2+c^3=2\)
-----> Quá vô lí vì \(a,c\ge1\Rightarrow3ca^2+3ac^2+c^3\ge7\)
Vậy mâu thuẫn giả thiết ---> \(n^3+1\)không thể là số chính phương với n lẻ.
CM : 11...1(n chữ số)211111...1(n chữ số) là hợp số vs mọi n thuộc N*