sử dụng phương pháp đặt ẩn phụ
1, (x+1)(x+3)(x+5)(x+7) +15
Phân tích đa thức thành nhân tử bằng phương pháp đặt ẩn phụ:
a) 36 x 6 − 24 x 3 + 4 ;
b) ( x 2 - 1 ) 2 - 18(x + l)(x -1);
c) (x + l)(x + 3)(x + 5)(x + 7) +15;
d) ( x 2 + x + 4 ) 2 + 8x( x 2 + x + 4) + 15 x 2 .
(x+1)(x+3)(x+4)(x+6)-7
dùng phương pháp đặt ẩn phụ
\(\left(x+1\right)\left(x+3\right)\left(x+4\right)\left(x+6\right)-7\)
\(=\left(x+1\right)\left(x+6\right)\left(x+3\right)\left(x+4\right)-7\)
\(=\left(x^2+7x+6\right)\left(x^2+7x+12\right)-7\)
Đặt \(x^2+7x+9=t\)
\(=\left(t-3\right)\left(t+3\right)-7\)
\(=t^2-9-7=t^2-16=\left(t-4\right)\left(t+4\right)\)
\(=\left(x^2+7x+9-4\right)\left(x^2+7x+9+4\right)\)
\(=\left(x^2+7x+5\right)\left(x^2+7x+13\right)\)
x(x-1)(x-2)(x-3)-3
dùng phương pháp đặt ẩn phụ
\(x\left(x-1\right)\left(x-2\right)\left(x-3\right)-3\)
\(=x\left(x-3\right)\left(x-1\right)\left(x-2\right)-3\)
\(=\left(x^2-3x\right)\left(x^2-3x+2\right)-3\)
Đặt \(x^2-3x+1=t\)
\(=\left(t-1\right)\left(t+1\right)-3\)
\(=t^2-1-3=t^2-4\)
\(=\left(t-2\right)\left(t+2\right)\)
\(=\left(x^2-3x+1-2\right)\left(x^2-3x+1+2\right)\)
\(=\left(x^2-3x-1\right)\left(x^2-3x+3\right)\)
Giải các phương trình sau theo phương pháp đặt ẩn phụ:
{\(\dfrac{5}{x+1}+\dfrac{1}{y-1}=10\)
\(\dfrac{1}{x-2}+\dfrac{3}{y-1}=18\)
Đặt \(\dfrac{1}{y-1}=a\), hpt tở thành
\(\left\{{}\begin{matrix}\dfrac{5}{x+1}+a=10\\\dfrac{1}{x-2}+3a=18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{15}{x+1}+3a=30\left(1\right)\\\dfrac{1}{x-1}+3a=18\left(2\right)\end{matrix}\right.\)
Lấy \(\left(1\right)-\left(2\right)\), ta được:
\(\dfrac{15}{x+1}-\dfrac{1}{x-1}=12\\ \Leftrightarrow\dfrac{15x-15-x-1}{\left(x-1\right)\left(x+1\right)}=12\\ \Leftrightarrow12x^2-12=14x-16\\ \Leftrightarrow12x^2-14x+4=0\\ \Leftrightarrow\left(3x-2\right)\left(2x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{2}{3}\end{matrix}\right.\)
Với \(x=\dfrac{1}{2}\Leftrightarrow\dfrac{10}{3}+\dfrac{1}{y-1}=10\Leftrightarrow\dfrac{10y-7}{3\left(y-1\right)}=10\)
\(\Leftrightarrow30y-30=10y-7\Leftrightarrow y=\dfrac{23}{20}\)
Với \(x=\dfrac{2}{3}\Leftrightarrow3+\dfrac{1}{y-1}=10\Leftrightarrow\dfrac{1}{y-1}=7\Leftrightarrow7y-7=1\Leftrightarrow y=\dfrac{8}{7}\)
Vậy \(\left(x;y\right)=\left\{\left(\dfrac{1}{2};\dfrac{23}{20}\right);\left(\dfrac{2}{3};\dfrac{8}{7}\right)\right\}\)
rút gọn bằng phương pháp đặt ẩn phụ
\(1+\sqrt[3]{x-116}x=\sqrt[3]{x+3}\)
Giải các phương trình sau bằng phương pháp đặt ẩn phụ: 3 x 2 + x + 1 – x = x 2 + 3
Giải HPT bằng phương pháp đặt ẩn phụ
\(\left\{{}\begin{matrix}\dfrac{6}{x+y}-\dfrac{3}{x-2y}=3\\\dfrac{1}{x+y}+\dfrac{7}{x-2y}=2\end{matrix}\right.\)
Đặt x+y=a; x-2y=b
=>6/a-3/b=3 và 1/a+7/b=2
=>a=5/3 và b=5
=>x+y=5/3 và x-2y=5
=>x=25/9; y=-10/9
phân tick đã thức sau thành nhân tử( sử dung phương pháp đặt ẩn phụ)
4(x+5)(x+6)(x+10)(x+12) - 3x^2
(x^2+3x+1)(x^2+3x+2)-6
3x^6-4x^5+2x^4-8x^3+2x^2-4x+3
Câu hỏi của Nguyễn Tấn Phát - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo câu a nhé!
phân tick đã thức sau thành nhân tử( sử dung phương pháp đặt ẩn phụ) 4(x+5)(x+6)(x+10)(x+12) - 3x^2
=4(x+5)(x+6)(x+10)(x+12)-3x^2
=4[(x+5)(x+12)][(x+6)(x+10)]-3x^2
=4(x^2+17x+60)(x^2+16x+60)-3x^2
đặt x^2+16x+60=y
=>4(y+x)y-3x^2
=4y^2+4yx-3x^2
=4y^2-2yx+6yx-3x^2
=2y(2y-x)+3x(2y-x)
=(2y-x)(2y+3x)
thay y=x^2+16x+60
=>(2x^2+32x+120-x)(2x^2+32x+120+3x)
=(2x^2+16x+15x+120)(2x^2+35x+120)
=2x(x+8)+15(x+8)(2x^2+35x+120)
=(x+8)(2x+15)(2x^2+35x+120)
Câu hỏi của Nguyễn Tấn Phát - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo nhé!