Tìm x , y , z biết x : y : z = 2 : 3 : 4 và x - 2z +7 = 10 - y
1/tính giá trị x+y biết x-3/y-5=3/5 và y-x=4
2/tìm x biết 15-x/7=x+7/4
3/tìm x,y,z biết 4/3x-2y=3/2z-4x=2/4y-3z và x+y-z=-10
4/tìm x,y,z biết x-1/2=y+3/4=z-5/6 và 5z-3x-4y=50
mấy bạn giúp mình nha mình cần gấp khoảng 1 giờ đã nộp bài gồi
bài 1 : tìm các số x, y , z , t biết :
x/2 = y/3 ; 7x = 2t ; z/t = 5/7 và y+ 2z + 3t = 10z
bài 2 : tìm các số x , y biết a , x:y = 4:7 và x +y = 44
b, x/2 = y/5 và x + y = 28
bài 3 : cho M = x + 2y - 3z / x - 2y + 3z . tính giá trị của M biết x ,y , z tỉ lệ với 5 ; 4 ; 3
bài 4 : cho a/b = c/d . chứng minh a+3b/b = c+3d/d
( các tỉ số đều có nghĩa )
làm nhanh cho mình 4 bài này với
cảm ơn các friends nhiều
Bài 4:
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
=>\(a=b\cdot k;c=d\cdot k\)
\(\dfrac{a+3b}{b}=\dfrac{bk+3b}{b}=\dfrac{b\left(k+3\right)}{b}=k+3\)
\(\dfrac{c+3d}{d}=\dfrac{dk+3d}{d}=\dfrac{d\left(k+3\right)}{d}=k+3\)
Do đó: \(\dfrac{a+3b}{b}=\dfrac{c+3d}{d}\)
Bài 2:
a: x:y=4:7
=>\(\dfrac{x}{4}=\dfrac{y}{7}\)
mà x+y=44
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{7}=\dfrac{x+y}{4+7}=\dfrac{44}{11}=4\)
=>\(x=4\cdot4=16;y=4\cdot7=28\)
b: \(\dfrac{x}{2}=\dfrac{y}{5}\)
mà x+y=28
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{28}{7}=4\)
=>\(x=4\cdot2=8;y=4\cdot5=20\)
Bài 3:
Đặt \(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}=k\)
=>x=5k; y=4k; z=3k
\(M=\dfrac{x+2y-3z}{x-2y+3z}\)
\(=\dfrac{5k+2\cdot4k-3\cdot3k}{5k-2\cdot4k+3\cdot3k}\)
\(=\dfrac{5+8-9}{5-8+9}=\dfrac{4}{6}=\dfrac{2}{3}\)
Tìm x,y,z biết: 4/3x-2y = 3/2z-4x = 2/4y-3z và x+y-z= -10
Tìm \(x\), \(y\), \(z\), biết:
\(\dfrac{4}{3x-2y}=\dfrac{3}{2z-4x}=\dfrac{2}{4y-3z}\) và \(x+y-z=-10\)
Tìm x,y,z biết
c, 2x = 3y = 4z và x - y + z = -10
d, x/3 = y/4 ; y/5 = z/7 ; 3x + y - 2z = 2,4
Mình cần gấp giúp với sẽ tick ạ
Bài 1 : Tìm x,y,z biết :
a) 2x = 3y ; 5y = 7z và 3x - 7y + 5z = -30
b) 3x =5y ; 7y = 2z và x + y + z = 74
c) x : z = \(\dfrac{2}{3}\) : \(\dfrac{1}{2}\) ; z : y = 1 : \(\dfrac{4}{7}\) và y + z = 66
d) x : y : z = 3 : 4 : 5 và \(2x^2\) + \(2y^2\) - \(3z^2\) = -100
e) \(x:y:z\) = 2 : 5 : 6 và \(2x^2\) + \(4y^2\) - \(4z^2\) = -324
f) \(\dfrac{x-1}{2}\) = \(\dfrac{y-2}{3}\) = \(\dfrac{z-3}{4}\) và \(x-2y+3z=14\)
g)\(\dfrac{x-1}{2}\) = \(\dfrac{y+3}{4}\) =\(\dfrac{z-5}{6}\) và \(5z-3x-4y=50\)
h) \(\dfrac{x}{2}=\dfrac{y}{7}\) và \(xy=56\)
i)\(\dfrac{x-y}{3}=\dfrac{x+y}{13}=\dfrac{xy}{200}\)
k) \(\dfrac{x-5}{6}=\dfrac{x+5}{18}\)
l) \(\dfrac{2x-11}{12}=\dfrac{x+5}{20}\)
Tìm x,y,z biết:
a) x/4 = y/3 = z/9 và x - 3y + 4z = 62
b) x/y = 9/7, y/z = 7/3 và x - y + z = -15
c) x/y = 7/20, y/z = 5/8 và 2x + 5y - 2z = 100
tìm x,y,z biết:
a) x\3=y\4 ; y\5=z\7 và 3x + y -2z=2,4
b) x\2=y\3 và x.y=54
Tìm x,y,z biết:
4/3x-2y = 3/2z-4x = 2/4y-3z và x+y-z=-10
Theo đề bài ta có:
\(\dfrac{4}{3x-2y}=\dfrac{3}{2z-4x}=\dfrac{2}{4y-3z}\)
\(\Rightarrow\)4(2z-4x) = 3(3x-2y)
3(4y-3z) = 2(2z-4x)
Ta có:
4(2z-4x) = 3(3x-2y)\(\Rightarrow\)8z-16x = 9x-6y\(\Rightarrow y=\dfrac{25x-8z}{6}\) (1)
\(\dfrac{3}{2z-4x}=\dfrac{2}{4y-3z}\Rightarrow3\left(4y-3z\right)=2\left(2z-4x\right)\)
\(\Rightarrow12y-9z=4z-8x\Rightarrow12y+8x=13z\) (2)
Thay (1) vào (2) ta có:
2(25x-8z)+8x = 13z\(\Rightarrow\)58x = 29z\(\Rightarrow\)z = 2x\(\Rightarrow\)y = \(\dfrac{3}{2}x\)
Thay vào đề bài x + y- z= - 10 ta tìm được:
x = -10; y = -20; z = -30
Ta có : \(\frac{4}{3x-2y}=\frac{3}{2z-4x}=\frac{2}{4y-3z}\) với x+y-z = -10 (1)
\(\Rightarrow4\left(2z-4x\right)=3\left(3x-2y\right)\) ; \(3\left(4y-3z\right)=2\left(2z-4x\right)\)
Ta có :
+) \(4\left(2z-4x\right)=3\left(3x-2y\right)\Rightarrow8z-16x=9x-6y\)\(\Rightarrow y=\frac{25x-8z}{y}\left(2\right)\)
+) \(3\left(4y-3z\right)=2\left(2z-4x\right)\Rightarrow12y-9z=4z-8x\)\(\Rightarrow12y+8x=13z\left(3\right)\)
Thay (1) vào (2) ta có :
\(2\left(25x-8z\right)+8x=13z\)
\(\Rightarrow50x-16z+8x=13z\)
\(\Rightarrow58x=29z\)
\(\Rightarrow2x=z\) (4)
\(\Rightarrow y=\frac{3}{2}x\) (5)
thay (4) và (5) vào biểu thức x+y-z = -10 ta có :
\(x+y-z=-10\Leftrightarrow x+\frac{3}{2}x-2x=-10\)
\(\Rightarrow\frac{1}{2}x=-10\)
\(\Rightarrow x=-20\) ; \(y=\frac{3}{2}\left(-20\right)=-30\) ; \(z=-20\cdot2=-40\)
vậy \(x=-20;y=-30;z=-40\)