Cho tam giác ABC, trực tâm H, M là trung điểm của BC, O là giao của các đường trung trực. Điểm D đối xứng với H qua M.
b) Chứng minh góc ABD = ACD = 900
c) Chứng minh A và D đối xứng với nhau qua O
Cho tam giác ABC, trực tâm H, M là trung điểm của BC, O là giao của các đường trung trực. Điểm D đối xứng với H qua M.
a) Chứng minh góc ABD = ACD = 900
b) Chứng minh A và D đối xứng nhau qua O.
Cho tam giác ABC, trực tâm H, M là trung điểm của BC, O là giao của các đường trung trực. Điểm D đối xứng với H qua M. Chứng minh A và D đối xứng nhau qua O.
cho tam giác ABC ,O là giao điểm các đường trung trực , H là trực tâm và M là trung điểm của cạnh BC . Gọi K là điểm đối xứng của H qua M . Chứng minh A và K đối xứng với nhau qua O
cho tam giác ABC . Gọi H là trực tâm của tam giác , M là trung điểm của BC .O là giao điểm các đường trung trực của tam giác ABC .Gọi D là điểm đối xứng của H và M
a) BHCD là hình gì
b) chứng minh : ABD=ACD=90
Tam giác ABC có O là giao điểm các đường trung trực. H là trực tâm của tam giác ABC. M là trung điểm BC. Gọi K là điểm đối xứng của H qua M. Chứng minh rằng A và K đối xứng nhau qua O
help me please!
Cho tam giác ABC, O là giao của 3 đường trung trực, H là trực tâm của tam giác M là trung điểm của BC. Gọi K là điểm đối xứng của H qua M. Chứng minh A và K đối xứng với nhau qua O
Giúp mình nha
1. Cho tam giác nhọn ABC ( AB≠AC) có các đường cao BD, CE cắt nhau tại H. Gọi O là giao điểm ba đường trung trực của tam giác ABC. M là trung điểm của BC. Gọi F là điểm đối xứng với A qua O.
a) Chứng minh: F đối xứng với H qua M.
b) HO cắt AM tại G. Chứng minh G là trọng tâm của tam giác ABC.
c) Giả sử AH=BC. Chứng minh HG đi qua trung điểm của đoạn thẳng DE.
2. Cho 2021 điểm phân biệt trong đó không có ba điểm nào thẳng hàng nằm trong hình chữ nhật (kể cả trên các cạnh) có kích thước 10\(\times\)101cm. Chứng minh rằng tồn tại một tam giác có 3 đỉnh lấy từ 2021 điểm đã cho có diện tích không vượt quá 1 cm2.
1
a) ta có A đối xứng với F qua O => O là trung điểm của AF
=> BO là trung tuyến của AF (1)
=> CO là trung tuyến của AF (2)
ta lại có O là giao điểm của 3 đường trung trực của tam giác ABC
=> OA = OB =OC (3)
từ 1-2-3 => Góc ABF = góc ACF = 90
=> AB vuông góc với FB
AC vuông góc với FC
mà CH vuông góc AB => CH // BF
BH vuông góc với AC => BH//CF
Xét tứ giác BHCF có
CH // BF
BH//CF
=> HBFC là hình bình hành (dhnb) có HF và BC là 2 đường chéo
M là trung điểm của BC
=> M là trung điểm của HF => 3 điểm H,M,F thẳng hàng ; HM =FM
=> H đối xứng với F qua M
b) Xét tam giác AHF có M là trung điểm của HF O là trung điểm AF
=> OM là đường trung bình
=> OM =1/2AH <=> AH/OM=2
vì H là giao điểm của 2 đường cao BD và CE nên H là trực tâm => AH vuông góc BC
ta lại có OM vuông góc với BC ( M là trung điểm của BC ; O là giao 3 đường trung tuyến => OM là đường trung tuyến của BC )
=> OM // AH => góc HAG =góc GMO (2 góc so le trong)
xét tam giác AHG và tam giác MOG
có :góc HGA =góc MGO (2 góc đối đỉnh)
góc HAG =góc GMO (cmt)
=> đồng dạng (gg) => AH /OM = AG/MG =2
<=> AG=2MG <=> AM = AG + MG =3MG
<=> AG/AM =2/3 mà AM là tiếp tuyến của BC ( m là trnug điểm BC)
=> G là trọng tâm của tma giác ABC
Cho tam giác ABC có O là giao điểm của 3 đường trung trực. H là trực tâm và M là trung điểm của BC. Gọi K là điểm đối xứng của H qua M. Chứng minh rằng A đối xứng với K qua O
Cho tam giác ABC, O là giao điểm các đường trung trực, H là trực tâm và M là trung điểm của cạnh BC. Gọi K là điểm đối xứng của H qua M. Chứng minh A và K đối xứng nhau qua O