phan tich da thuc thanh nhan tu
4x2-4y2-4y-1
\(x^2-x-4y^2-2y\) phan tich da thuc thanh nhan tu
\(x^2-x-4y^2-2y\)
\(=x^2-4y^2-\left(x+2y\right)\)
\(=\left(x-2y\right)\left(x+2y\right)-\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y-1\right)\)
phan tich da thuc thanh nhan tu
x^2 + 4y^2 +3x - 6y
giai dum mik vs
\(x^2+4y^2+3x-6y=\left(x^2+3x\right)-\left(4y^2+6y\right)=x\left(x+3\right)-2y\left(2y+3\right)\)
Phan tich da da thuc thanh nhan phan tu
(x^2+x+1)(x^2+x+2)-12
\(=\left(x^2+x\right)^2+3\left(x^2+x\right)+2-12\)
\(=\left(x^2+x\right)^2+3\left(x^2+x\right)-10\)
\(=\left(x^2+x+5\right)\left(x^2+x-2\right)\)
\(=\left(x^2+x+5\right)\left(x+2\right)\left(x-1\right)\)
phan tich da thuc thanh nhan tu: 4x^4-32x^2+1
4x^4 - 32x^2 +1 = 4x^4 + 4x^2 +1 - 36x^2 = (2x^2 + 1)^2 - 36x^2 = (2x^2 - 6x + 1)(2x^2 + 6x + 1)
4 x4 - 32 x2 + 1
= ( 2 x2 )2 - 2 . 2x2. 8 + 64 - 63
= ( 2 x2 - 8 )2 - 63
= ( 2x2 - 8 + √63 ) ( 2x2 - 8 - √63 )
Xong
phan tich da thuc thanh nhan tu 1-3x-x^3+3x^2
\(1-3x-x^3+3x^2\)\(=\left(1-x^3\right)+\left(3x^2-3x\right)\)
\(=\left(1-x\right)\left(x^2+x+1\right)+3x\left(x-1\right)\)
\(=\left(x-1\right)\left(3x-x^2-x-1\right)=\left(x-1\right)\left(2x-x^2-1\right)\)
phan tich da thuc thanh nhan tu
x^5+x+1
x^5+x+1
=x(x^4+1)+1
=(x^2+x+1)(x^3-x^2+1)
Ta có : x5 + x + 1
= x5 + x4 - x4 - x3 + x3 + x2 - x2 - x + x + 1
= (x5 + x4) - (x4 + x3) + (x3 + x2) - (x2 + x) + (x + 1)
= x5(x + 1) - x4.(x + 1) + x3(x + 1) - x2(x + 1) + (x + 1)
= (x + 1)(x5 - x4 + x3 - x2 + 1)
6x2-5x-3xy+10x
phan tich da thuc thanh nhan tu
\(=6x^2+5x-3xy\)
\(=x\left(6x+5-3y\right)\)
phan tich da thuc thanh nhan tu:x^8+64
x8+64
=(x4)2+16x4+82-16x4
=(x4+8)2-(4x2)2
=(x4+8-4x2)(x4+8+4x2)
Phan tich da thuc thanh nhan tu : x2 - 4x -y2+4
\(x^2-4x+4-y^2\)
\(=\left(x-2\right)^2-y^2\)
\(=\left(x-2-y\right)\left(x-2+y\right)\)
\(x^2-4x-y^2+4=\left(x-2\right)^2-y^2=\left(x-y-2\right)\left(x+y-2\right)\)