Tìm x,y
20x +11=12y
Tim x,y biet:
1)x^2-2x+5+y^2-4y=0
2)4x^2+y^2-20x+26-2y=0
3)x^2+4y^2+13-6x-8y=0
4)4x^2+4x-6y+9x^2+2=0
5)x^2+y^2+6x-10y+34=0
6)25x^2-10x+9y^2-12y+5=0
7)x^2+9y^2-10x-12y+29=0
89x^2+12x+4y62+8y+8=0
9)4x^2+9y^2+20x-6y+26=0
10)3x^2+3y^2+6x-12y+15=0
11)x^2+4y^2+4x-4y+5=0
12)4x^2-12x+y^2-4y+13=0
13)x^2+y^2+2x-6y+10=0
14)4x^2+9y^2-4x+6y+2=0
15)y^2+2y+5-12x+9x^2=0
16)x^2+26+6y+9y^2-10x=0
17)10-6x+12y+9x^2+4y^2=0
18)16x^2+5+8x-4y+y^2=0
19)x^2+9y^2+4x+6y+5=0
20)5+9x^2+9y^2+6y-12x=0
21)x^2+20+9y62+8x-12y=0
22)x^2=4y+4y^2+26-10x=0
23)4y^2+34-10x+12y+x^2=0
24)-10x+y^2-8y+x^2+41=0
25)x^2+9y^2-12y+29-10x=0
26)9x^2+4y^2+4y+5-12x=0
27)4y^2-12x+12y+9x^2=13=0
28)4x^2+25-12x-8y+y^2=0
29)x62+17+4y^2+8x+4y=0
30)4y^2+12y+25+8x+x^2=0
31)x^2+20+9y^2+8x-12y=0
giup mk voi minh can gap ak, cam on cac ban
Cho x và y thỉa mãn: 2x^2+12y^2-8x-12y+11=0. Tính xy? ....... cảm ơn nha ^^
2x^2+12y^2-8x-12y+11=0
<=> (2x^2 -8x + 8) + (12y^2 -12y + 3) = 0
<=> 2(x^2 -4x + 4) + 3(4y^2 -4y + 1) = 0
<=> 2(x-2)^2 + 3(2y-1)^2 = 0 (*)
Do (x-2)^2 và (2y-1)^2 luôn >= 0
=> Pt (*) chỉ xảy ra dấu = khi và chỉ khi (x-2)^2 và (2y-1)^2 đồng thời =0
=> x-2 = 0 và 2y - 1 = 0
=> x = 2 và y = 1/2 là nghiệm của pt
xy=1/2*2=2/2=1
vậy xy=1
2x^2+12y^2-8x-12y+11=0
<=> (2x^2 -8x + 8) + (12y^2 -12y + 3) = 0
<=> 2(x^2 -4x + 4) + 3(4y^2 -4y + 1) = 0
<=> 2(x-2)^2 + 3(2y-1)^2 = 0 (*)
Do (x-2)^2 và (2y-1)^2 luôn >= 0
=> Pt (*) chỉ xảy ra dấu = khi và chỉ khi (x-2)^2 và (2y-1)^2 đồng thời =0
=> x-2 = 0 và 2y - 1 = 0
=> x = 2 và y = 1/2 là nghiệm của pt
2x^2+12y^2-8x-12y+11=0
<=> (2x^2 -8x + 8) + (12y^2 -12y + 3) = 0
<=> 2(x^2 -4x + 4) + 3(4y^2 -4y + 1) = 0
<=> 2(x-2)^2 + 3(2y-1)^2 = 0 (*)
Do (x-2)^2 và (2y-1)^2 luôn >= 0
=> Pt (*) chỉ xảy ra dấu = khi và chỉ khi (x-2)^2 và (2y-1)^2 đồng thời =0
=> x-2 = 0 và 2y - 1 = 0
=> x = 2 và y = 1/2 là nghiệm của pt
Tính giá trị biểu thức sau:
A = x2 - 20x + 100 với x = 10.
B = 4x2 - 4xy + y2 với x = \(\dfrac{1}{2}\); y = 1.
C = 4x2 - 20x + 25 với x = \(\dfrac{5}{2}\).
D = 9y2 - 12y + 5 với x = \(\dfrac{1}{2}\); y = 1
\(A=x^2-20x+100=\left(x-10\right)^2\)
Với \(x=10\Rightarrow A=\left(10-10\right)^2=0\)
\(B=4x^2-4xy+y^2=\left(2x-y\right)^2\)
Với \(x=\dfrac{1}{2};y=1\Rightarrow B=\left(2.\dfrac{1}{2}-1\right)^2=0\)
\(C=4x^2-20x+25=\left(2x-5\right)^2\)
Với \(x=\dfrac{5}{2}\Rightarrow\left(2.\dfrac{5}{2}-5\right)^2=0\)
d, ko có x you ạ
\(D=9y^2-12y+5=\left(9x^2-12y+4\right)+1=\left(3x-2\right)^2+1\)Với \(y=\dfrac{2}{3}\Rightarrow D=\left(3\dfrac{2}{3}-2\right)^2+1=1\)
Cho x và y thỏa mãn: 2x2+12y2-8x-12y+11 = 0. Tính xy.
Tìm x,y,z biết \(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{12y-20z}{11}\)
\(\frac{x+2}{327}+\frac{x+3}{326}+\frac{x+4}{325}+\frac{x+5}{324}=-4\)
\(\Leftrightarrow\) \(\frac{x+2}{327}+\frac{x+3}{326}+\frac{x+4}{325}+\frac{x+5}{324}+4=0\)
\(\Leftrightarrow\) \(\left(\frac{x+2}{327}+1\right)+\left(\frac{x+3}{326}+1\right)+\left(\frac{x+4}{325}+1\right)+\left(\frac{x+5}{324}+1\right)=0\)
\(\Leftrightarrow\) \(\frac{x+329}{327}+\frac{x+329}{326}+\frac{x+329}{325}+\frac{x+329}{324}=0\)
\(\Leftrightarrow\) \(\left(x+329\right)\left(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}\right)=0\) \(\left(\text{*}\right)\)
Vì \(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}\ne0\) nên từ \(\left(\text{*}\right)\) \(\Rightarrow\) \(x+329=0\), tức \(x=-329\)
Vậy, \(S=\left\{-329\right\}\)
Đây mới là đề nè :
Tìm x biết \(\frac{x+2}{327}+\frac{x+3}{326}+\frac{x+4}{325}+\frac{x+5}{324}=-4\)
Cho x và y thỏa mãn 2x^2 +12y^2-8x-12y+11=0.Vậy x.y=?
MINA ƠI !GIÚP MÌH VỚI NKA MAI THI RÙI THANKS TRƯỚC
Tìm xy biết 2x^2+12y^2-8x-12y+11
2x^2+12y^2-8x-12y+11=0
<=> (2x^2 -8x + 8) + (12y^2 -12y + 3) = 0
<=> 2(x^2 -4x + 4) + 3(4y^2 -4y + 1) = 0
<=> 2(x-2)^2 + 3(2y-1)^2 = 0 (*)
Do (x-2)^2 và (2y-1)^2 luôn >= 0
=> Pt (*) chỉ xảy ra dấu = khi và chỉ khi (x-2)^2 và (2y-1)^2 đồng thời =0
=> x-2 = 0 và 2y - 1 = 0
=> x = 2 và y = 1/2
tick nha bạn
Tìm GTNN của biểu thức
A= x\(^2\)-6x+11
B= x\(^2\)-20x+101
C= x\(^2\)-16x+11
a: A=x^2-6x+9+2=(x-3)^2+2>=2
Dấu = xảy ra khi x=3
b: B=x^2-20x+100+1=(x-10)^2+1>=1
Dấu = xảy ra khi x=10
d: C=x^2-16x+8+3
=(x-4)^2+3>=3
Dấu = xảy ra khi x=4
Tim GTNN của
a/C=\(x^2+4y^2+9z^2-4x+12y-24z+30\)
b/D=\(20x^7+18y^2-24xy-4x-12+2016\)
Ai giúp mk vs ai nhanh mk tick nha :3
Cho: \(20x^2+11y^2=2008\)
Tìm Min, Max: \(N=2\sqrt{5}x+\sqrt{11}y\)
\(N^2\le2\left(20x^2+11y^2\right)=4016\)\(\Leftrightarrow\)\(-4\sqrt{251}\le N\le4\sqrt{251}\)
\(\hept{\begin{cases}N_{min}=-4\sqrt{251}\left(x=-\sqrt{\frac{251}{5}};y=-\sqrt{\frac{1004}{11}}\right)\\N_{max}=4\sqrt{251}\left(x=\sqrt{\frac{251}{5}};y=\sqrt{\frac{1004}{11}}\right)\end{cases}}\)