Tìm nghiệm nguyên dương của phương trình:
\(x^3+7y=y^3+7x\)
Tìm tất cả các cặp số (x,y) nguyên, dương là nghiệm của phương trình sau:
5x+7y=112
Tìm số nghiệm nguyên dương của bất phương trình
2 2 x + 3 ≤ 2 2019 - 7 x
A. 201
B. 100
C. 102
D. 200
Gọi (x; y) là nghiệm nguyên dương nhỏ nhất của phương trình 6x − 7y = 5. Tính x – y
A. 2
B. 3
C. 1
D. −1
Ta có 6x – 7y = 5 ⇔ x = 7 y + 5 6 ⇔ x = y + y + 5 6
Đặt y + 5 6 = t t ∈ ℤ ⇒ y = 6t – 5 = 6 ⇒ x = y + y + 5 6 = 6t – 5 + t = 7t – 5
Nên nghiệm nguyên của phương trình là x = 7 t − 5 y = 6 t − 5 t ∈ ℤ
Vì x, y nguyên dương nên x > 0 y > 0 ⇒ 7 t − 5 > 0 6 t − 5 > 0 ⇒ t > 5 7 t > 5 6 ⇒ t > 5 7
mà t ∈ ℤ ⇒ t ≥ 1
Do đó nghiệm nguyên dương nhỏ nhất của phương trình có được khi t = 1
⇒ x = 7.1 − 5 y = 6.1 − 5 ⇒ x = 2 y = 1 ⇒ x − y = 1
Đáp án: C
Tìm nghiệm nguyên dương của các phương trình sau:
a) 7x - xy - 3y = 0
b) 14x - 5y = 4xy - 3
c) xy - 5(x + y) = 1
a.ta có \(\left(x+3\right)\left(y-7\right)=-21\Rightarrow y-7\in\left\{-3,-1\right\}\) ( do x+3>3 và 0>y-7>-7)
\(\Rightarrow\hept{\begin{cases}y=4\\x=4\end{cases}\text{ hoặc }}\hept{\begin{cases}y=6\\x=18\end{cases}}\)
c. \(\left(x-5\right)\left(y-5\right)=26=2\cdot13\Rightarrow x-5\in\left\{-2,-1,1,2,13,26\right\}\)
suy ra \(\left(x,y\right)\in\left\{\left(6,31\right);\left(31,6\right);\left(7,18\right);\left(18,7\right)\right\}\)
b.\(4xy+5y-14x=3\Leftrightarrow8xy+10y-28x=6\)
\(\Leftrightarrow\left(4x+5\right)\left(2y-7\right)=-29\)
mà 4x+5>5\(\Rightarrow4x+5=29\Leftrightarrow\hept{\begin{cases}x=6\\y=3\end{cases}}\)
1.Tìm nghiệm nguyên dương của phương trình : a) ( x+2y).( 3x+ 7y) = 216
2. Tìm nghiệm nguyên của phương trình : x2 - 49 = y.(y+6)
3.
1) Chứng minh rằng: \(x^3-7y=51\) không có nghiệm nguyên
2) Tìm nghiệm nguyên của phương trình \(x^2-5y^2=27\)
3) Tìm nghiệm nguyên dương
a) \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\)
b)\(\dfrac{1}{x}+\dfrac{1}{y}=z\)
1) Xét x=7k (k ∈ Z) thì x3 ⋮ 7
Xét x= \(7k\pm1\) thì x3 ⋮ 7 dư 1 hoặc 6.
Xét x=\(7k\pm2\) thì x3 ⋮ 7 dư 1 hoặc 6.
Xét x=\(7k\pm3\)\(\) thì x3 ⋮ 7 dư 1 hoặc 6.
Do vế trái của pt chia cho 7 dư 0,1,6 còn vế phải của pt chia cho 7 dư 2. Vậy pt không có nghiệm nguyên.
3) a, Ta thấy x,y,z bình đẳng với nhau, không mất tính tổng quát ta giả thiết x ≥ y ≥ z > 0 <=> \(\dfrac{1}{x}\le\dfrac{1}{y}\le\dfrac{1}{z}\) ,ta có:
\(1=\dfrac{1}{z}+\dfrac{1}{y}+\dfrac{1}{z}\le\dfrac{3}{z}< =>z\le3\)
Kết luận: nghiệm của pt là ( x;y;z): (6:3:2), (4;4;2), (3;3;3) và các hoán vị của nó (pt này có 10 nghiệm).
1. Tìm các nghiệm nguyên dương của phương trình: 3(xy+yz+zx) = 4xyz
2. Xác định tất cả các cặp (x;y) nguyên dương thỏa mãn phương trình: (x+1)^4 - (x-1)^4 = y^3
3. Tìm nghiệm nguyên dương của phương trình: x^2y + y^2z + z^2x = 3xyz
P/s: Tôi có bài giải rồi, ai có ý kiến khác tôi thì ý kiến nhé
Tui vừa trả lời 3 bài này ở câu của Nguyễn Anh Quân
Xem tui giải đúng không nha
Xin Wrecking Ball nhận xét
1...Chia cả hai vế cho xyz ta được
3xy/xyz + 3yz/xyz + 3zx/xyz = 4xyz/xyz
<=>3/x + 3/y + 3/z = 4
<=>1/x + 1/y + 1/z = 4/3
Vì x,y,z bình đẳng nên giả sử 0<x<=y<=z
+nếu x>=4=> y>=4;z>=4
=> 1/x + 1/y + 1/z <= 1/4 + 1/4 + 1/4 =3/4 < 4/3 => pt vô nghiệm
+nếu x=1 => 1+1/y+1/z=4/3
<=> 1/y+1/z=1/3
<=> 3(y+z)=yz
<=> 3y+3z-yz=0
<=> 3y-yz+3z-9=-9
<=> y(3-z)-3(3-z)=-9
<=> (3-z)(3-y)=9
Vì y,z nguyên dương nên (3-y),(3-z) nguyên dương
mà 9=3*3=1*9=9*1
==>3-z=3 và 3-y=3 => z=0 và y=0 (loại vì y,z nguyên dương)
+nếu x=2 => 1/2+1/y+1/z=4/3
<=> 1/y+1/z=5/6
<=> 6(y+z)=5yz
<=> 6y+6z-5yz=0
<=> 30y-25yz+30z-36=-36
<=> 5y(6-5z)-6(6-5z)=-36
<=> (5z-6)(5y-6)=36
Vì y,z nguyên dương nên (5y-6),(5z-6) nguyên dương
mà 36=6*6=2*18=18*2=3*12=12*3=4*9=9*4
Giải tương tự phần trên ta được
y=2,z=3 hoặc y=3,z=2
+nếu x=3 => 1/3+1/y+1/z=4/3
<=> 1/y+1/z=1
Giải tương tự phần trên ta được y=z=2
Vậy (x;y;z)=(2;2;3);(2;3;2);(3;2;2)
MK cop nhưng ủng hộ mk nha , mk có lòng trả lời
Tìm các số nguyên dương khác nhau x và y thỏa mãn x^3+7y=y^3+7x
Tìm nghiệm nguyên dương của phương trình: \(2^{3^x}+1=3^y\) với \(x\ge2\).