Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bii Linh
Xem chi tiết
Nguyễn Bình
Xem chi tiết
Nguyễn Bình
10 tháng 1 lúc 7:48

Cảm ơn cô

Bài 1:

Vì p là số nguyên tố lớn hơn 3 nên p là số lẻ

vậy p + 1 và p -  1 là hai số chẵn.

Mà p + 1 - (p - 1) = 2 nên p + 1 và p - 1 là hai số chẵn liên tiếp.

đặt p - 1 = 2k thì p + 1 = 2k + 2 (k \(\in\) N*)

A = (p + 1).(p - 1) = (2k + 2).2k = 2.(k + 1).2k = 4.k.(k +1) 

Vì k và k + 1 là hai số tự nhiên liên tiếp nên chắc chẵn phải có một số chia hết cho 2.

⇒ 4.k.(k + 1) ⋮ 8 

⇒ A = (p + 1).(p - 1) ⋮ 8 (1)

Vì p là số nguyên tố lớn hơn 3 nên p có dạng:

   p = 3k + 1; hoặc p = 3k + 2

Xét trường hợp p = 3k + 1 ta có:

  p - 1 = 3k + 1  - 1  = 3k ⋮ 3

⇒ A = (p + 1).(p - 1) ⋮ 3  (2)

Từ (1) và (2) ta có:

A ⋮ 3; 8  ⇒ A \(\in\) BC(3; 8)

3 = 3; 8 = 23; ⇒ BCNN(3; 8) = 23.3 = 24

⇒ A \(\in\) B(24) ⇒ A ⋮ 24 (*)

Xét trường hợp p = 3k + 2 ta có

p + 1 = 3k + 2 + 1  = 3k + 3 = 3.(k + 1) ⋮ 3 (3)

Từ (1) và (3) ta có: 

A = (p + 1).(p - 1) ⋮ 3; 8 ⇒ A \(\in\) BC(3; 8)

3 = 3; 8 = 23 ⇒ BCNN(3; 8) = 23.3 = 24 

⇒ A \(\in\) BC(24) ⇒ A \(⋮\) 24 (**)

Kết hợp (*) và(**) ta có

\(⋮\) 24 (đpcm)

 

 

  

 

 

Bài 2:

P = 10p + 1 và p là số nguyên tố lớn hơn 3 chứng minh 5p + 1 là hợp số

Ta có vì p là số nguyên tố lớn hơn 3 nên p là số lẻ

⇒ p = 2k + 1 (k \(\in\) N*)

ta có: \(\left\{{}\begin{matrix}p=2k+1\\10p+1=10.\left(2k+1\right)+1\end{matrix}\right.\)

⇒ \(\left\{{}\begin{matrix}5p=5.\left(2k+1\right)\\10p+1=20k+11\end{matrix}\right.\)

\(\left\{{}\begin{matrix}5p=10k+5\\10p+1=20k+11\end{matrix}\right.\)

⇒ 10p + 1 - 5p =  20k + 11 - (10k + 5)

⇒ 5p + 1 = 20k + 11  - 10k - 5

⇒ 5p + 1  = 10k + 6 

⇒ 5p + 1  = 2.(5k + 3)

⇒ 5p + 1 ⋮ 1; 1; (5k + 3) 

⇒ 5p + 1 là hợp số (đpcm)

 

 

Hoàng Khánh Chinh
Xem chi tiết
Hoàng Anh Thư
29 tháng 10 2017 lúc 22:21

câu 2:

9x^2-6x+6>0

ta có (3x)^2-2.3.x+1+5

= (3x-1)^2+5

vì (3x-1)^2 lớn hơn hoặc bằng 0

=> (3x-1)^2+5>0 (đpcm)

Hoàng Anh Thư
29 tháng 10 2017 lúc 22:22

Câu 1 : Rút gọn biểu thức:

(3x -1)2 + 2 (3x -1) (2x + 1) + (2x + 1)2

= (3x-1+2x+1)^2=25x^2

An Nguyễn Bá
30 tháng 10 2017 lúc 7:55

Câu 2:

\(9x^2-6x+6\)

\(=9x^2-6x+1+5\)

\(=\left[\left(3x\right)^2-2.3x.1+1^2\right]+5\)

\(=\left(3x+1\right)^2+5\)

\(\left(3x+1\right)^2\ge0\) với mọi x

Nên \(\left(3x+1\right)^2+5>0\) với mọi x

Vậy \(9x^2-6x+6>0\) với mọi x ( điều phải chứng minh)

Trịnh Minh Châu
Xem chi tiết
Nguyễn Quốc Minh
6 tháng 3 2020 lúc 16:43

​​Giải pt : 

(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4

9(2x+1)=4(x-5)2

​​Giải pt : 

(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4

9(2x+1)=4(x-5)2

​​Giải pt : 

(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4

9(2x+1)=4(x-5)2

​​Giải pt : 

(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4

9(2x+1)=4(x-5)2

​​Giải pt : 

(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4

9(2x+1)=4(x-5)2

​​Giải pt : 

(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4

9(2x+1)=4(x-5)2

​​Giải pt : 

(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4

9(2x+1)=4(x-5)2

​​Giải pt : 

(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4

9(2x+1)=4(x-5)2

​​Giải pt : 

(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4

9(2x+1)=4(x-5)2

​​Giải pt : 

(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4

9(2x+1)=4(x-5)2

​​Giải pt : 

(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4

9(2x+1)=4(x-5)2

​​Giải pt : 

(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4

9(2x+1)=4(x-5)2

​​Giải pt : 

(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4

9(2x+1)=4(x-5)2

​​Giải pt : 

(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4

9(2x+1)=4(x-5)2

​​Giải pt : 

(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4

9(2x+1)=4(x-5)2

​​Giải pt : 

(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4

9(2x+1)=4(x-5)2

​​Giải pt : 

(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4

9(2x+1)=4(x-5)2

​​Giải pt : 

(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4

9(2x+1)=4(x-5)2

​​Giải pt : 

(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4

9(2x+1)=4(x-5)2

​​Giải pt : 

(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4

9(2x+1)=4(x-5)2

​​Giải pt : 

(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4

9(2x+1)=4(x-5)2

​​Giải pt : 

(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4

9(2x+1)=4(x-5)2

​​Giải pt : 

(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4

9(2x+1)=4(x-5)2

​​Giải pt : 

(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4

9(2x+1)=4(x-5)2

​​Giải pt : 

(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4

9(2x+1)=4(x-5)2

​​Giải pt : 

(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4

9(2x+1)=4(x-5)2

​​Giải pt : 

(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4

9(2x+1)=4(x-5)2

​​Giải pt : 

(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4

9(2x+1)=4(x-5)2

​​Giải pt : 

(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4

9(2x+1)=4(x-5)2

​​Giải pt : 

(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4

9(2x+1)=4(x-5)2

​​Giải pt : 

(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4

9(2x+1)=4(x-5)2

​​Giải pt : 

(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4

9(2x+1)=4(x-5)2

​​Giải pt : 

(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4

9(2x+1)=4(x-5)2

​​Giải pt : 

(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4

9(2x+1)=4(x-5)2

​​Giải pt : 

(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4

9(2x+1)=4(x-5)2

​​Giải pt : 

(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4

9(2x+1)=4(x-5)2

Khách vãng lai đã xóa
Nguyễn Huy Hoàng
Xem chi tiết
Trịnh Minh Châu
Xem chi tiết
Chu Công Đức
6 tháng 3 2020 lúc 16:38

Bạn xem lại đề câu a, cái chỗ \(\left(3x-1\right)\left(9x^2-3x+1\right)\)

Khách vãng lai đã xóa
Trịnh Minh Châu
6 tháng 3 2020 lúc 21:27

thanks bạn đã tl mk nha , mk coi kĩ đề r ! đúng mak 

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 3 2017 lúc 14:48

Trịnh Minh Châu
Xem chi tiết
๖²⁴ʱんuリ イú❄✎﹏
6 tháng 3 2020 lúc 21:36

\(9\left(2x+1\right)=4\left(x-5\right)2\)

\(18x+9=4x-40\)

\(18x-4x=-40-9\)

\(14x=-49\)

\(x=-\frac{7}{2}\)

Khách vãng lai đã xóa
Edogawa Conan
6 tháng 3 2020 lúc 21:37

(3x - 2)(9x2 + 6x + 4) - (3x - 1)(9x2 - 3x + 1) = x - 4

<=> 27x3 - 8 - 27x3 + 1 = x - 4

<=> x - 4 = -7

<=> x=  -3

Vậy S = {-3}

9(2x + 1) = 4(x - 5)2

<=> 18x + 9 - 4x2 + 40x - 100 = 0

<=> -4x2 + 58x - 91 = 0

<=> -(4x2 - 58x + 210,25 - 119,25) = 0

<=> (2x - 14,5)2 = 119,25

<=> \(\orbr{\begin{cases}2x-14,5=\sqrt{119,25}\\2x-14,5=-\sqrt{119,25}\end{cases}}\)

<=> \(\orbr{\begin{cases}x=\frac{29+3\sqrt{53}}{4}\\x=\frac{29-3\sqrt{53}}{4}\end{cases}}\)

Vậy S = {...}

Khách vãng lai đã xóa
linh angela nguyễn
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 5 2021 lúc 22:18

Đặt \(f\left(x\right)=2x^3-9x^2+12x-2-m\)

\(f\left(x\right)\) là hàm đa thức nên liên tục trên R

 \(\forall m\in\left(2;3\right)\) ta có:

\(f\left(0\right)=-2-m< 0\)

\(f\left(1\right)=3-m>0\)

\(\Rightarrow f\left(0\right).f\left(1\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(0;1\right)\) (1)

\(f\left(2\right)=2-m< 0\)

\(\Rightarrow f\left(1\right).f\left(2\right)< 0\Rightarrow f\left(x\right)\)  luôn có ít nhất 1 nghiệm thuộc \(\left(1;2\right)\) (2)

\(f\left(3\right)=7-m>0\)

\(\Rightarrow f\left(2\right).f\left(3\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(2;3\right)\) (3)

Từ (1); (2); (3) \(\Rightarrow f\left(x\right)\) luôn có 3 nghiệm dương pb