Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
tran gia vien
Xem chi tiết
Đào Trà
Xem chi tiết
Hồng Phúc
23 tháng 8 2021 lúc 23:04

2.

\(sin3x+cos2x=1+2sinx.cos2x\)

\(\Leftrightarrow sin3x+cos2x=1+sin3x-sinx\)

\(\Leftrightarrow cos2x+sinx-1=0\)

\(\Leftrightarrow-2sin^2x+sinx=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\sinx=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)

Hồng Phúc
23 tháng 8 2021 lúc 23:01

1.

\(cos3x-cos4x+cos5x=0\)

\(\Leftrightarrow cos3x+cos5x-cos4x=0\)

\(\Leftrightarrow2cos4x.cosx-cos4x=0\)

\(\Leftrightarrow\left(2cosx-1\right)cos4x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=\dfrac{1}{2}\\cos4x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\pm\dfrac{\pi}{3}+k2\pi\\4x=\dfrac{\pi}{2}+k\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\pm\dfrac{\pi}{3}+k2\pi\\x=\dfrac{\pi}{8}+\dfrac{k\pi}{4}\end{matrix}\right.\)

Hồng Phúc
23 tháng 8 2021 lúc 23:10

3.

\(cos2x-cosx=2sin^2\dfrac{3x}{2}\)

\(\Leftrightarrow2sin\dfrac{3x}{2}.sin\dfrac{x}{2}+2sin^2\dfrac{3x}{2}=0\)

\(\Leftrightarrow2sin\dfrac{3x}{2}.\left(sin\dfrac{x}{2}+sin\dfrac{3x}{2}\right)=0\)

\(\Leftrightarrow sin\dfrac{3x}{2}.sinx.cos\dfrac{x}{2}=0\)

Đến đây dễ rồi tự làm tiếp nha.

Kimian Hajan Ruventaren
Xem chi tiết
Hồng Phúc
20 tháng 5 2021 lúc 22:49

a, \(\dfrac{1+cosx+cos2x+cos3x}{2cos^2x+cosx-1}\)

\(=\dfrac{1+cos2x+cosx+cos3x}{2cos^2x+cosx-1}\)

\(=\dfrac{2cos^2x+2cos2x.cosx}{cos2x+cosx}\)

\(=\dfrac{2cosx\left(cos2x+cosx\right)}{cos2x+cosx}=2cosx\)

Lê Thị Thục Hiền
20 tháng 5 2021 lúc 22:54

b) \(cos\dfrac{5x}{2}.cos\dfrac{3x}{2}+sin\dfrac{7x}{2}.sin\dfrac{x}{2}\)

\(=cos\dfrac{4x+x}{2}.cos\dfrac{4x-x}{2}+sin\dfrac{4x+3x}{2}.sin\dfrac{4x-3x}{2}\)

\(=\dfrac{1}{2}\left(cos4x+cosx\right)-\dfrac{1}{2}\left(cos4x-cos3x\right)\)

\(=\dfrac{1}{2}\left(cosx+cos3x\right)=\dfrac{1}{2}.2cos2x.cos\left(-x\right)\)\(=cosx.cos2x\)

 

Trần Ánh
Xem chi tiết
Siêu Phẩm Hacker
17 tháng 9 2019 lúc 15:41

1.

        \(\cos2x+\sin\left(x+\frac{pi}{4}\right)=0\)

\(\Leftrightarrow\sin\left(x+\frac{pi}{4}\right)=-\cos2x\)

\(\Leftrightarrow\sin\left(x+\frac{pi}{4}\right)=\sin\left(2x-\frac{pi}{2}\right)\)

\(\Leftrightarrow\orbr{\begin{cases}x+\frac{pi}{4}=2x-\frac{pi}{2}+k2pi\\x+\frac{pi}{4}=pi-2x+\frac{pi}{2}+k2pi\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}-x=-\frac{3}{4}pi+k2pi\\3x=+\frac{5}{4}pi+k2pi\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{4}pi+k2pi\\x=\frac{5}{12}pi+k\frac{2}{3}pi\end{cases}}\)

2.

\(\sin\left(3x-\frac{5pi}{6}\right)+\cos\left(3x+\frac{3pi}{6}\right)=0\)

\(\Leftrightarrow\sin\left(3x-\frac{5pi}{6}\right)=-\cos\left(3x+\frac{3pi}{6}\right)\)

\(\Leftrightarrow\sin\left(3x-\frac{5pi}{6}\right)=\sin\left(3x+\frac{3pi}{6}-\frac{pi}{2}\right)\)

\(\Leftrightarrow\orbr{\begin{cases}3x-\frac{5pi}{6}=3x+\frac{3pi}{6}-\frac{pi}{2}+k2pi\\3x-\frac{5pi}{6}=pi-3x-\frac{3pi}{6}+\frac{pi}{2}+k2pi\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}0x=\frac{5pi}{6}+k2pi\left(VN\right)\\6x=\frac{11pi}{6}+k2pi\end{cases}}\)

\(\Leftrightarrow x=\frac{11pi}{36}+k\frac{1}{3}pi\)

nguyễn ngọc thạch
Xem chi tiết
Trần Bảo An
26 tháng 9 2016 lúc 22:10

đề này chắc chắn đúng không bạn???

 

hằng hồ thị hằng
Xem chi tiết
Tam Cao Duc
Xem chi tiết
đề bài khó wá
7 tháng 4 2020 lúc 18:07

a) Ta có : \(sin\left(x-\frac{2\pi}{3}\right)=cos2x\)

\(\Leftrightarrow sin\left(x-\frac{2\pi}{3}\right)=sin\left(\frac{\pi}{2}-2x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{2\pi}{3}=\frac{\pi}{2}-2x+k2\pi\\x-\frac{2\pi}{3}=\pi-\frac{\pi}{2}+2x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{7\pi}{18}+k\frac{2\pi}{3}\\x=-\frac{7\pi}{6}-k2\pi\end{matrix}\right.\)

Vậy ...

ĐỖ THỊ THANH HẬU
Xem chi tiết
Akai Haruma
20 tháng 10 2020 lúc 16:47

Lời giải:

ĐKXĐ: ...............

PT \(\Leftrightarrow \frac{(\sin x-\cos x)(\sin ^2x+\sin x\cos x+\cos ^2x)}{\sqrt{\sin x}+\sqrt{\cos x}}=-2(\sin x-\cos x)(\sin x+\cos x)\)

\(\Leftrightarrow (\sin x-\cos x)\left[\frac{\sin ^2x+\sin x\cos x+\cos ^2x}{\sqrt{\sin x}+\sqrt{\cos x}}+2(\sin x+\cos x)\right]=0\)

Dễ thấy với $\sin x, \cos x\geq 0$ thì biểu thức trong ngoặc vuông luôn lớn hơn $0$

Do đó:

$\sin x-\cos x=0$

$\Leftrightarrow \sin x=\cos x$

Mà $\sin ^2x+\cos ^2x=1; \sin x, \cos x\geq 0$ nên $\sin x=\cos x=\frac{1}{\sqrt{2}}$

$\Rightarrow x=k\pi -\frac{7}{4}\pi$ với $k$ nguyên.

Khách vãng lai đã xóa
Lâm Như
Xem chi tiết