Cho S=4+2^2+2^3+...+2^20
-Hỏi S có chia hết cho 128 không
-Tìm chữ số tận cùng của S
Câu 1 : Cho A = 1+ 22 + 23 + ... + 220
Chứng minh A chia hết cho 128
Câu 2 : Tìm chữ số tận cùng của A biết :
A = 5 +52 + 53 +...+ 595 + 596
Câu 3 :Cho S = 1 + 3 + 32 + ... + 349
a/ Chứng minh rằng S chia hết cho 4
b/ Tìm chữ số tận cùng của S
cho S = 7\(^{2023}\) - 7\(^{2022}\) + 7\(^{2021}\) - ... 7\(^2\) + 7 + 7\(^1\)
a) Hỏi S có chia hết cho 6 không, vì sao?
B) Tìm chữ số tận cùng của S
cho S = 1+3+3^2+3^3+...+3^104
a,tìm chữ số tận cùng của s
b,tổng S có chia hết cho 2;5;10 không
a) số có chữ số tận cùng bằng 4 thì chia hết cho 2
Đ&S
b) số chia hết cho 2 thì có chữ số tận cùng bằng 4
Đ&S
c) số chia hết cho 2 và 5 thì có chữ số tận cùng bằng 0
Đ&S
d) số chia hết cho 5 thì có chữ số tận cùng bằng 5
Đ&S
Bài 1: Cho S= 3 + 3^2 + 3^3 +...+ 3^100. Chứng minh rằng S chia hết cho 4. Tìm chữ số tận cùng của S.
Bài 2: Chứng minh rằng: ( 1+2+2^2+2^3+...+2^17) chia hết cho 9
Bài 1: Cho S= 3 + 3^2 +3^3 +...+3^100. Chứng minh rằng S chia hết cho 4. Tìm chữ số tận cùng của S.
Bài 2: Chứng minh rằng: ( 1 + 2 + 2^2 + 2^3 +...+ 2^17 ) chia hết cho 9
Cho S = 2^1 + 2^2 + 2^3 + ... + 2^60. Tìm chữ số tận cùng của S và chứng minh rằng S chia hết cho 14
S = 2¹ + 2² + 2³ + ... + 2⁶⁰
= (2 + 2² + 2³ + 2⁴) + (2⁵ + 2⁶ + 2⁷ + 2⁸) + ... + (2⁵⁷ + 2⁵⁸ + 2⁵⁹ + 2⁶⁰)
= 30 + 2⁴.(2 + 2² + 2³ + 2⁴) + ... + 2⁵⁶.(2 + 2² + 2³ + 2⁴)
= 30 + 2⁴.30 + 2⁵⁶.30
= 30.(1 + 2⁴ + ... + 2⁵⁶)
= 10.3.(1 + 2⁴ + ... + 2⁵⁶) ⋮ 10
Vậy chữ số tận cùng của S là 0
*) S = 2¹ + 2² + 2³ + ... + 2⁶⁰
= (2 + 2² + 2³) + (2⁴ + 2⁵ + 2⁶) + ... + (2⁵⁸ + 2⁵⁹ + 2⁶⁰)
= 14 + 2³.(2 + 2² + 2³) + ... + 2⁵⁷.(2 + 2² + 2³)
= 14 + 2³.14 + ... + 2⁵⁷.14
= 14.(1 + 2³ + ... + 2⁵⁷) ⋮ 14
Vậy S ⋮ 14
Cho S=2^1+2^2+2^3+...........+2^100
a,CRN S chia hết cho 3
b,CRM S chia hết cho 15
c,Tìm chữ số tận cùng của S
Dễ thấy S có 100 số hạng nên ta có:
a,S=(2^1+2^2)+(2^3+2^4)+...+(2^99+2^100)
=2(1+2)+2^3(1+2)+...+2^99(1+2)
=3(2+2^3+...+2^99) chia hết cho 3
b,S=(2^1+2^2+2^3+2^4)+...+(2^97+2^98+2^99+2^100)
=2(1+2+4+8)+...+2^97(1+2+4+8)
=15(2+2^5+...+2^97) chia hết cho 15
c, Ta có: 2S=2^2+2^3+...2^201
2S-S=2^201-2
Do 2^201=4^100 có chữ số tận cùng là 6
Nên 2^201-2 có chữ số tận cùng là 4
Hay S có chữ số tận cùng là 4
Cho S=2+2^2+2^3+2^4+2^5+...+2^99.
a)Chứng minh rằng:S chia hết cho 7.
b)Tính gọn S.
c)Tìm chữ số tận cùng của S.