chứng minh giá trị biêu thức ko âm ko dương
(a+c)(a-c)-b( 2a-b) -(a-b+c)(a-b-c)
tìm giá trị nhỏ nhất của biêu thức \(P=\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\) với a,b,c là các số dương sao cho abc=1
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel:
\(P=\frac{a^2}{ab+2ca}+\frac{b^2}{bc+2ab}+\frac{c^2}{ca+2bc}\ge\frac{\left(a+b+c\right)^2}{3\left(ab+bc+ca\right)}\ge1\)
Cộng thêm giả thiết abc=1, suy ra dấu "=" xảy ra khi \(a=b=c=1\)
1) cho a;b;c ko âm .chứng minh \(\sqrt{\frac{a+2b}{3}}+\sqrt{\frac{b+2c}{3}}+\sqrt{\frac{c+2a}{3}}\ge\sqrt{a}+\sqrt{b}+\sqrt{c}\)
2) cho a;;b;c dương và abc=1. chứng minh \(\frac{bc}{a^2b+a^2c}+\frac{ca}{b^2c+b^2a}+\frac{ab}{c^2a+c^2b}\ge\frac{3}{2}\)
Bài 1:
\(BDT\Leftrightarrow\sqrt{\frac{3}{a+2b}}+\sqrt{\frac{3}{b+2c}}+\sqrt{\frac{3}{c+2a}}\le\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\)
\(\Leftrightarrow\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\ge\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)
Áp dụng BĐT Cauchy-Schwarz và BĐT AM-GM ta có:
\(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{b}}\ge\frac{9}{\sqrt{a}+\sqrt{2}\cdot\sqrt{2b}}\ge\frac{9}{\sqrt{\left(1+2\right)\left(a+2b\right)}}=\frac{3\sqrt{3}}{\sqrt{a+2b}}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}+\frac{1}{\sqrt{c}}\ge\frac{3\sqrt{3}}{\sqrt{b+2c}};\frac{1}{\sqrt{c}}+\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{a}}\ge\frac{3\sqrt{3}}{\sqrt{c+2a}}\)
Cộng theo vế 3 BĐT trên ta có:
\(3\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)\ge3\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)
\(\Leftrightarrow\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\ge\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)
Đẳng thức xảy ra khi \(a=b=c\)
Bài 2: làm mãi ko ra hình như đề sai, thử a=1/2;b=4;c=1/2
Bài 2/
\(\frac{bc}{a^2b+a^2c}+\frac{ca}{b^2c+b^2a}+\frac{ab}{c^2a+c^2b}\)
\(=\frac{b^2c^2}{a^2b^2c+a^2c^2b}+\frac{c^2a^2}{b^2c^2a+b^2a^2c}+\frac{a^2b^2}{c^2a^2b+c^2b^2a}\)
\(=\frac{b^2c^2}{ab+ac}+\frac{c^2a^2}{bc+ba}+\frac{a^2b^2}{ca+cb}\)
\(\ge\frac{\left(bc+ca+ab\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\)
\(\ge\frac{3\sqrt[3]{ab.bc.ca}}{2}=\frac{3}{2}\)
Dấu = xảy ra khi \(a=b=c=1\)
bạn alibaba dòng thứ nhất rồi sao ra được dòng thứ hai á bạn mình k hiểu
cho các đơn thức A=1/2.x^2y.z^2, B=-3/4.x.y^2.z℅2, C=x^3.y. Chứng minh các đơn thức A,B,C ko thể cùng nhận giá trị âm
Cho số hữu tỷ y= 2a -1 /-3 . với giá trị nào thì
a) y la số dương
b) y là số âm
c) y ko âm cũng ko dương
Cho số hữu tỷ y= 2a -1 /-3 . với giá trị nào thì
a) y la số dương
b) y là số âm
c) y ko âm cũng ko dương
a, Để y dương
=> 2a-1 và -3 cùng dấu
=> 2a-1 < 1
=> 2a < 2
=> a < 1
b, Để y âm
=> 2a-1 và -3 khác dấu
=> 2a-1 > 0
=> 2a > 1
=> a > 1/2
c, Để y không âm cũng không dương thì y = 0
=> 2a - 1 = 0
=> 2a = 1
=> a = 1/2
ủa sao lại 2a=1/2 đc nhỉ a bên canh sao bằng đc ảo
1)Tính P = 3a-b/2a+15 + 3b-a/2b-15 với a-b=15 và a,b khác 7,5
2) Cho đa thức A=5x^4 - 7x^2+ 4xy+y^2; B=-9x^4 - 4xy - 7y^2. Chứng minh 2 đa thức ko đồng thời có giá trị dương tại mỗi giá trị của x,y\(\left\{{}\begin{matrix}A=5x^4-7x^2+4xy+y^2\\B=-9x^4-4xy-7y^2\end{matrix}\right.\)
\(A+B=5x^4-7x^2+4xy+y^2-9x^4-4xy-7y^2\)
\(A+B=\left(5x^4-9x^4\right)+\left(4xy-4xy\right)-\left(7y^2-y^2\right)-7x^2\)
\(A+B=-4x^4-6y^2-7x^2\)
Vì:
\(x^4\ge0\Rightarrow-4x^4\le0\)
\(\left\{{}\begin{matrix}6y^2\ge0\\7x^2\ge0\end{matrix}\right.\)
\(\Rightarrow-4x^4-6y^2-7x^2\le0\)
Vậy A và B không cùng dương
\(P=\dfrac{3a-b}{2a+15}+\dfrac{3b-a}{2b-15}\)
\(P=\dfrac{3a-b}{2a+a-b}+\dfrac{3b-a}{2b-a+b}\)
\(P=\dfrac{3a-b}{3a-b}+\dfrac{3b-a}{3b-a}\)
\(P=1+1=2\)
1.Tìm các số nguyên dương a,b thỏa 1/a+1/b=1/p với p là số nguyên tố
2.Cho các số nguyên dương a<bc<d<e<f . Chứng minh a+c+e/a+b+c+d+e+f <1/2
3.Với giá trị nào của a thuộc Z thì số hữu tỉ x là số dương ? Là số âm ? Là số không âm ? Là số không dương ? Không là số dương cũng ko là số âm ?
Câu a .x=2a+7/-5
Câu b. x=a-4/a^2
Câu c.. x=a^2+9/-7
Câu d. x=a-6/a-11
Các bạn giải hộ mình nhé . Mik càn gấp . Thanks
Một họ gồm m phần tử đại diện cho m lớp tương đương nói trên được gọi là một hệ thặng dư đầy đủ modulo m. Nói cách khác, hệ thặng dư đầy đủ modulo m là tập hợp gồm m số nguyên đôi một không đồng dư với nhau theo môđun m.
(x1, x2, …, xm) là hệ thặng dư đầy đủ modulo m ó xi – xj không chia hết cho m với mọi 1 £ i < j £ m.
Ví dụ với m = 5 thì (0, 1, 2, 3, 4), (4, 5, 6, 7, 8), (0, 3, 6, 9, 12) là các hệ thặng dư đầy đủ modulo 5.
Từ định nghĩa trên, ta dễ dàng suy ra tính chất đơn giản nhưng rất quan trọng sau:
Tính chất 1: Nếu (x1, x2, …, xm) là một hệ thặng dư đầy đủ modulo m thì
a) Với a là số nguyên bất kỳ (x1+a, x2+a, …, xm+a) cũng là một hệ thặng dư đầy đủ modulo m.
b) Nếu (a, m) = 1 thì (ax1, ax2, …, axm) cũng là một hệ thặng dư đầy đủ modulo m.
Với số nguyên dương m > 1, gọi j(m) là số các số nguyên dương nhỏ hơn m và nguyên tố cùng nhau với m. Khi đó, từ một hệ thặng dư đầy đủ mô-đun m, có đúng j(m) phần tử nguyên tố cùng nhau với m. Ta nói các phần tử này lập thành một hệ thặng dư thu gọn modulo m. Nói cách khác
(x1, x2, …, xj(m)) là hệ thặng dư thu gọn modulo m ó (xi, m) = 1 và xi – xj không chia hết cho m với mọi 1 £ i < j £ j(m).
Ta có
Tính chất 2: (x1, x2, …, xj(m)) là hệ thặng dư thu gọn modulo m và (a, m) = 1 thì
(ax1,a x2, …, axj(m)) cũng là một hệ thặng dư thu gọn modulo m.
Định lý Wilson. Số nguyên dương p > 1 là số nguyên tố khi và chỉ khi (p-1)! + 1 chia hết cho p.
Chứng minh. Nếu p là hợp số, p = s.t với s, t > 1 thì s £ p-1. Suy ra (p-1)! chia hết cho s, suy ra (p-1)! + 1 không chia hết cho s, từ đó (p-1)! + 1 không chia hết cho p. Vậy nếu (p-1)! + 1 chia hết cho p thì p phải là số nguyên tố.
~Hok tốt`
P/s:Ko chắc
\(a< b< c< d< e< f\)
\(\Rightarrow a+c+e< b+d+f\)
\(\Rightarrow2\left(a+c+e\right)< a+b+c+d+e+f\)
\(\Rightarrow\frac{a+c+e}{a+b+c+d+e+f}< \frac{1}{2}\)
Ta có:
\(\frac{1}{a}+\frac{1}{b}=\frac{1}{p}\)
\(\Leftrightarrow\frac{a+b}{ab}=\frac{1}{p}\)
\(\Leftrightarrow p\left(a+b\right)=ab\left(1\right)\)
Do p là số nguyên tố nên một trong các số a,b phải chia hết cho p
Do a,b bình đẳng như nhau nên ta giả sử \(a⋮p\Rightarrow a=pk\) với \(k\inℕ^∗\)
Nếu \(p=1\) thay vào \(\left(1\right)\) ta được
\(p\left(p+b\right)=p\)
\(\Rightarrow p+b=1\left(KTM\right)\)
\(\Rightarrow p\ge2\) thay vào \(\left(1\right)\) ta được:
\(p\left(kp+b\right)=kpb\)
\(\Rightarrow kp+b=kb\)
\(\Rightarrow kp=kb-b\)
\(\Rightarrow kp=b\left(k-1\right)\)
\(\Rightarrow b=\frac{kp}{k-1}\)
Do \(b\inℕ^∗\) nên \(kp⋮k-1\)
Mà \(\left(k;k-1\right)=1\Rightarrow p⋮k-1\)
\(\Rightarrow k-1\in\left\{1;p\right\}\)
Với \(k-1=1\Rightarrow k=2\Rightarrow a=b=2p\)
Với \(k-1=p\Rightarrow k=p+1\Rightarrow\hept{\begin{cases}a=p\left(p+1\right)=p^2+p\\b=p+1\end{cases}}\)
Cho hàm số được xác định bởi công thức : y = f(x) = a.x^2 = b.x + c
a, Tìm a , b , c biết f(0) = - 4 ; f(1) = - 1 ; f(-1) = - 9
b, Chứng minh rằng giá trị của hàm số ko nhận giá trị dương với mọi giá trị của biến x với a , b , c vừa tìm được ở câu a
cho hai số hửu tỉ x=2a+7/5 và y=3b-8/5 với giá trị nào của a,b . a. x và y là hai số dương b x và y là hai số âm c. x và y ko phải là số dương và cũng không số âm
lên google tra là bài tập về số hữu tỉ lớp 7 là ra