\(\left\{{}\begin{matrix}A=5x^4-7x^2+4xy+y^2\\B=-9x^4-4xy-7y^2\end{matrix}\right.\)
\(A+B=5x^4-7x^2+4xy+y^2-9x^4-4xy-7y^2\)
\(A+B=\left(5x^4-9x^4\right)+\left(4xy-4xy\right)-\left(7y^2-y^2\right)-7x^2\)
\(A+B=-4x^4-6y^2-7x^2\)
Vì:
\(x^4\ge0\Rightarrow-4x^4\le0\)
\(\left\{{}\begin{matrix}6y^2\ge0\\7x^2\ge0\end{matrix}\right.\)
\(\Rightarrow-4x^4-6y^2-7x^2\le0\)
Vậy A và B không cùng dương
\(P=\dfrac{3a-b}{2a+15}+\dfrac{3b-a}{2b-15}\)
\(P=\dfrac{3a-b}{2a+a-b}+\dfrac{3b-a}{2b-a+b}\)
\(P=\dfrac{3a-b}{3a-b}+\dfrac{3b-a}{3b-a}\)
\(P=1+1=2\)