Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Oanh Nguyễn
Xem chi tiết
fairytail
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 9 2018 lúc 4:26
Minh Nguyệt
Xem chi tiết
Lê Nguyễn Phương Uyên
30 tháng 7 2023 lúc 15:54

a) Ta có:-

- M là trung điểm của AB

⇒  AM = MB.

- N là trung điểm của BC

⇒ BN = NC.

- P là trung điểm của CD

⇒ CP = PD.

- Q là trung điểm của DA

⇒ DQ = QA.

Do đó, ta có: AM = MB = BN = NC = CP = PD = DQ = QA.

⇒ tứ giác MNPQ là hình bình hành.

Có:

- I là trung điểm của AC

⇒AI = IC.

- K là trung điểm của BD

⇒ BK = KD.

Do đó, ta có: AI = IC = BK = KD.

⇒ tứ giác INKQ là hình bình hành.

b)Gọi O là giao điểm của MP và NQ ta có:

MP // AB và NQ//CD ( M và N là trung điểm của AB và CD).

⇒ MP song song với NQ.

do đó :O nằm trên MP và NQ.

  Gọi H là giao điểm của MI và NK ta có:

MI // AC và NK // BD (do I và K là trung điểm của đường chéo AC và BD). 

⇒ MI song song với NK.

  Do đó: H nằm trên cả MI và NK.

  Gọi G là giao điểm của OH và BD ta có:

OH //MP và BD // MP (do O nằm trên MP và NQ, và H nằm trên  MI và NK). 

⇒ OH song song với BD.

doo đó: G nằm trên OH và BD.

⇒ I, O, K thẳng hàng.(ĐPCM)

Nguyễn Lê Phước Thịnh
30 tháng 7 2023 lúc 15:49

a: Xét ΔBAC có BM/BA=BN/BC=1/2

nên MN//AC và MN=1/2AC

Xét ΔDAC có DQ/DA=DP/DC

nên PQ//AC và PQ/AC=DQ/DA=1/2

=>PQ=1/2AC

=>MN//PQ và MN=PQ

=>MNPQ là hình bình hành

Xét ΔCAB có CI/CA=CN/CB=1/2

nên IN//AB và IN=1/2AB

Xét ΔDAB có DQ/DA=DK/DB=1/2

nên QK//AB và QK=1/2AB

=>IN//QK và IN=QK

=>INKQ là hình bình hành

b: MNPQ là hình bình hành

=>MP cắt NQ tại trung điểm của mỗi đường

=>O là trung điểm của NQ

INKQ là hbh

=>IK cắt NQ tại trung điểm của mỗi đường

=>I,O,K thẳng hàng

Lê Đinh Hùng
Xem chi tiết
Forever AF
Xem chi tiết
Nguyệt Tích Lương
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 9 2021 lúc 14:44

a: Xét tứ giác BMDN có 

BM//ND

BM=ND

Do đó: BMDN là hình bình hành

Suy ra: MD//BN

kaka
Xem chi tiết
Nguyễn  Thị Phương Thu
Xem chi tiết
Lê Thanh Trà
11 tháng 10 2015 lúc 11:03

a) chứng minh tứ giác AMCN là hình bình hành

M là trung điểm AB nên: AM = \(\frac{1}{2}\)BC

N là trung điểm CD nên: CN = \(\frac{1}{2}\)CD

Vì tứ giác ABCD là hình bình hành nên:

- AB = CD => AM = CN

- AB // CD => AM //CN

Tứ giác AMCN có cặp cạnh AM, CN song song và bằng nhau nên nó là hình bình hành.

b) chứng minh M, O, N thẳng hàng

* AC và BD là hai đường chéo của hình bình hành ABCD nên chúng cắt nhau tại trung điểm của mỗi đường.

Do đó, O là trung điểm AC

* AC và MN là hai đường chéo của hình bình hành AMCN nên MN phải đi qua trung điểm O của AC

hay M, O, N thẳng hàng.