Tìm a để đa thức x^4 - 9x^3 + 21x^2 + x + a chia hết cho đa thức x^2 - x -2
Tìm a, b để đa thức x^4 – 9x^3 + 21x^2 + ax + b chia hết cho đa thức x^2 - x -2.
Cho 2 đa thức f(x)=\(x^4-9x^3+21x^2+x+a\) và g(x)=\(x^2-x-2\)
a)Cho a =-100,tìm dư của phép chia đa thức f(x) và g(x)
b)Tìm a để f(x) chia hết cho g(x)
Giải chi tiết hộ mình nhé thanks
Thực hiện phép chia đa thức \(f\left(x\right)\) cho \(g\left(x\right)\) ta được
\(x^4-9x^3+21x^2+x+a=\left(x^2-x-2\right)\left(x^2-8x+15\right)+a+30\)
Do đó dư của phép chia \(f\left(x\right)\) cho \(g\left(x\right)\) là \(a+30\).
a) Với \(a=-100\) dư của phép chia đa thức \(f\left(x\right)\) và \(g\left(x\right)\) là \(-100+30=-70\).
b) Để \(f\left(x\right)\) chia hết cho \(g\left(x\right)\) thì \(a+30=0\Leftrightarrow a=-30\).
bài 1 : tìm a và b để cho đa thức A chia hết cho đa thức B khi:
A=4x ³+15x ²+24x+3+a và B=x ²+4x+7
A=x mũ 4-9x ³+21x ²+ax+b vả B=x ²-3x+2
a: \(\Leftrightarrow4x^3+16x^2+28x-x^2-4x-7+10+a⋮x^2+4x+7\)
hay a=-10
tìm a,b để đa thức f(x) chia hết cho g(x)
F(x)=x^4-9x^3+21x^2+ax+b
G(x)=x^2-x-2
a) Tìm a để đa thức \(x^4-9x^3+21x^2+x+a\) chia hết cho \(x^2-x-2\)
b) Tìm a,b để đa thức \(2x^4+ax+b\) chia hết cho \(x^2-2\)
a: \(\Leftrightarrow x^4-x^3-2x^2-8x^3+8x^2+16x+15x^2-15x-30+a+30⋮x^2-x-2\)
=>a+30=0
=>a=-30
b: \(\Leftrightarrow2x^4-4x^2+4x^2-8+ax+b+8⋮x^2-2\)
=>a=0 và b=-8
Xác định a và b để đa thức f(x)=\(X^4-9x^3+21x^2+ax+b\) chia hết cho đa thức g(x)=\(X^2-x-2\)
Bài 1 : Tìm a,b để đa thức f(x) chia hết cho đa thức g(x), với: a. f(x)= x^4 -9x^3 +21x^2 + ax +b, g(x)= x^2 -x -2
b. f(x) = x^4 - x^3 + 6x^2 - x +a, g(x) = x^2 -x +5
Tìm a để đa thức x4 - 9x3 + 21x2 + x + a chia hết cho x2 - x - 2
tìm a,b để đa thứ f(x) chia hết cho đa thức g(x)
\(a.f\left(x\right)=x^4-9x^3+21x^2+ax+b: g\left(x\right)=x^2-x-1\)
\(b.f\left(x\right)=x^4-x^3+6x^2-x+a: g\left(x\right)=x^2-x+5\)
\(c.f\left(x\right)=3x^3+10x^2-5+a: g\left(x\right)=3x+1\)
em chưa cho đa thức f(x) và g(x) nà
a: \(\dfrac{f\left(x\right)}{g\left(x\right)}\)
\(=\dfrac{x^4-9x^3+21x^2+ax+b}{x^2-x-1}\)
\(=\dfrac{x^4-x^3-x^2-8x^3+8x^2+8x+14x^2-14x-14+\left(a+6\right)x+b+14}{x^2-x-1}\)
\(=x^2-8x+14+\dfrac{\left(a+6\right)x+b+14}{x^2-x-1}\)
Để f(x) chia hết cho g(x) thì a+6=0 và b+14=0
=>a=-6 và b=-14
b: \(\dfrac{f\left(x\right)}{g\left(x\right)}=\dfrac{x^4-x^3+5x^2+x^2-x+5+a-5}{x^2-x+5}\)
\(=x^2+1+\dfrac{a-5}{x^2-x+5}\)
Để f(x) chia hết g(x) thì a-5=0
=>a=5