Tìm số tự nhiên nhỏ hơn 400 mà khi chi cho 2,3,4,5,6 đều dư 1 nhưng choa cho 7 thì không dư.
tìm số tự nhiên nhỏ hơn 400 mà khi chia cho 2,3,4,5,6 đều dư 1 và khi chia cho 7 thì không du
tìm số nhỏ hơn 400 mà khi chia cho 2,3,4,5,6 đều dư 1 nhưng khi chia cho 7 thì không đủ
tìm số tự nhiên nhỏ nhất biết rằng khi số đó chia cho 2,3,4,5,6 thì đều dư 1 nhưng khi chia cho 7 thì không còn dư
Ta gọi số đó là a (a thuộc N)theo đề bài ta có a chia cho 2;3;4;5;6; đều dư 1 (1).Vậy a-1 chia hết cho 2;3;4;5;6 mà đề bài bảo rằng số đó là số nhỏ nhất (2).Từ (1) và (2) ta suy ra a-1 là BCNN(2;3;4;5;6) mà BCNN(2;3;4;5;6) là 60 . Ta thấy đề bài nói số đố phải chia hết cho 7 nên a-1 chia hết cho 7. Ta lấy 60.7=420. Vậy a=420+1=421.Vậy số ta cần tìm là 421 (Chúc bạn học tốt nhé)
Tìm số tự nhiên nhỏ hơn 400 mà khi chia số đó cho 2;3;4;5;6 đều dư 1 và khi chia cho 7 thì không dư.
Gọi số cần tìm là a , ta có:
a chia 2;3;4;5;6 dư 1
=> a - 1 thuộc BC(2;3;4;5;6)
2 = 2 ; 3 = 3 ; 4 = 22 ; 5 = 5 ; 6 = 2.3
=> BCNN(2;3;4;5;6) = 22.3.5 = 60
Vậy a \(\in\) {1 ; 61 ; 121 ; 181 ; 241 ; 301 ; 361 ; 421 ; ..}
Mà a < 400 và a chia hết cho 7 nên a = 301
Vậy số cần tìm là 301
Gọi số cần tìm là a ( a thuộc N*)
a chia 2;3;4;5;6 dư 1
=> a - 1 thuộc BC(2;3;4;5;6)
2 = 2 ; 3 = 3 ; 4 = 22 ; 5 = 5 ; 6 = 2.3
=> BCNN(2;3;4;5;6) = 22.3.5 = 60
Vậy a ∈ {1 ; 61 ; 121 ; 181 ; 241 ; 301 ; 361 ; 421 ; ..}
Mà a < 400 và a chia hết cho 7 nên a = 301
Vậy số Cần tìm là 301
1. Tìm số tự nhiên nhỏ hơn 400 mà khi chia số đó cho 2,3,4,5 và 6 đều dư 1 nhưng khi chia cho 7 thì không còn dư.
2. Tìm một số tự nhiên nhỏ hơn 200, biết rằng số đó không chia hết cho 2, chia cho 3 dư 1, chia cho 5 thiếu 1 và chia hết cho 7.
Viết cách giải ra giúp mình nha!
Bài 1: Gọi số cần tìm là a. \(\left(a\in N,a< 400\right)\)
Khi đó ta có a - 1 chia hết cho 2, 3, 4, 5 và 6.
Nói cách khác a - 1 chia hết BCNN(2,3,4,5,6) = 60
Vậy a có dạng 60k + 1.
Do a < 400 nên \(60k+1< 400\Rightarrow k\le6\)
Do a chia hết 7 nên ta suy ra a = 301
Bài 2.
Do số cần tìm không chia hết cho 2 và chia 5 thiếu 1 nên phải có tận cùng là 9.
Số đó lại chia hết cho 7 nên ta tìm được các số là :
7.7 = 49 (Thỏa mãn)
7.17 = 119 (Chia 3 dư 2 - Loại)
7.27 = 189 (Chia hết cho 3 - Loại)
7.37 = 259 ( > 200 - Loại)
Vậy số cần tìm là 49.
a chia cho 4, 5, 6 dư 1 nên (a - 1) chia hết cho 4, 5, 6
=> (a - 1) là bội chung của (4,5,6)
=> a - 1 = 60n => a = 60n+1 với 1 ≤ n < (400-1)/60 = 6,65
mặt khác a chia hết cho 7 => a = 7m
Vậy 7m = 60n + 1
có 1 chia 7 dư 1
=> 60n chia 7 dư 6
mà 60 chia 7 dư 4
=> n chia 7 dư 5
mà n chỉ lấy từ 1 đến 6 => n = 5
a = 60.5 + 1 = 301
Tìm số tự nhiên a. Biết số đó chia hết cho 7 và khi chia cho 2,3,4,5,6 đều dư 1 và a nhỏ hơn 400.
301 nhé bạn yêu
HOK TỐT NHÉ! NHỚ K CHO TUI NỮA NHÉ!
a) tìm số tự nhiên có ba chữ số lớn nhất mà khi chia số đó cho 4 dư 3, chia 5 dư 4, chia 6 dư 5
b) tìm số tự nhiên nhỏ hơn 400 mà khi chia số đó cho 2; 3; 4; 5; 6 đều dư 1 và khi chia cho 7 thì không dư
một số tự nhiên chia cho 2,3,4,5,6 đều dư 1,nhưng khi chia cho 7 thì không còn dư
a)tìm số tự nhiên nhỏ nhất có tính chất như trên
b)tìm dạng chung của các số có tính chất trên
mn giúp mik nha mik đang cần gấp
a) Gọi số cần tìm là a (a\(\in N\)*)
Có: a - 1 \(⋮3\)
a - 1 \(⋮4\)
a - 1 \(⋮5\)
=> a - 1 \(\in BCNN\left(3;4;5\right)\)
=> a - 1 = 3x4x5 = 60
=> a = 61
Vậy số cần tìm là 61
b) Dạng chung của các số có tính chất trên là 60k + 1 (\(k\in N\)*)
a. Tìm số tự nhiên có 3 chữ số bé nhất mà khi chia số bé nhất cho 4 dư 5 ; chia 5 dư 4 ; chia 6 dư 5
b. tìm số tự nhiên bé hơn 400 mà khi chia số đó cho2;3;4;5;6 đều dư 1vaf khi chia chi 7 thì không dư