Chứng tỏ rằng với mọi số tự nhiên n thì tích n.(n + 5) chia hết cho 2.
Ai nhank mk tick
Chứng tỏ rằng với mọi số tự nhiên n thì tích n.(n + 5) chia hết cho 2.
+ Xét TH1: n chẵn
Suy ra n chia hết 2, do đó n(n + 5) cũng chia hết cho 2.
+ Xét TH2: n lẻ
Suy ra n + 5 chẵn
Do đó (n + 5) chia hết 2
Vậy n(n +5) chia hết cho 2.
Chứng tỏ rằng với mọi số tự nhiên n thì tích nx(n+5) chia hết cho 2.
TA CÓ
+ Nếu n chia hết cho 2 thì nx(n+5) chia hết cho 2 thì bài toán đã được chứng minh
+Nếu n ko chia hết cho 2 thì n = 2k+1 suy ra n+5 =2k+5+1=2k+6
mà 2k chia hết cho 2 và 6 chia hết cho 2 nên n+5 chia hết cho 2
suy ra n(n+5) chia hết cho 2
Vậy n(n+5) luôn chia hết cho 2 (đpcm)
Nếu n = 2k => n chia hết cho 2
=> n(n + 5) chia hết cho 2
Nếu n = 2k + 1 => n + 5 = 2k + 1 + 5 = 2k + 6 chia hết cho 2
=> n + 5 chia hết cho 2
=> n(n + 5) chia hết cho 2
Vậy với mọi số tự nhiên n thì tích n(n + 5) chia hết cho 2.
nếu n lẻ thì n+5chawnx=>đpcm
n chẵn=>đpcm
Chứng tỏ rằng với mọi số tự nhiên n thì tích (n+3).(n+12) là số chia hết cho 2
n luôn chia hết cho 2
vì n + 3 x n + 12 luôn là số chẵn
Chứng tỏ rằng mọi số tự nhiên n thì tích n (n+5) chia hết cho 2
xét 2 trường hợp:
+ TH1: n chẵn, tức n = 2k.
n.(n+5)=2k.(2k+5) chia hết cho 2.
+ TH2: n lẻ, tức n = 2k+1
n.(n+5)=(2k+1).(2k+6)= (2k+1).2.(k+3) chia hết cho 2.
Vậy với mọi n thì n.(n+5) chia hết cho 2
Với n = 2k => n chia hết cho 2
=> n(n + 5) chia hết cho 2
Với n = 2k + 1
=> n + 5 = 2k + 1 + 5 = 2k + 6 chia hết cho 2
=> n + 5 chia hết cho 2
=> n(n + 5) chia hết cho 2
Vậy với mọi số tự nhiên n thì tích n(n + 5) chia hết cho 2.
Chứng tỏ với mọi số tự nhiên n thì tích (n+3)(n+12) chia hết cho 2
a,Chứng tỏ rằng hai số 9n+7 và 4n+3 là hai số nguyên tố cùng nhau.
b, Chứng minh rằng với mọi số tự nhiên n thì n2+n+2016 không chia hết cho 5.
Chứng minh rằng với mọi số tự nhiên n thì n2 + n + 2016 không chia hết cho 5
n2+n+2016
=n2+n+1+2015
Ta xét ra 5 trường hợp n2 có chữ số tận cùng là: 1,4,5,6,9.
Bc cuối bạn có thể tự làm nhé.
Chúc may mắn!!!
+) Xét n=5k
=>\(n^2+n+2016=25k^2+5k+2016=5\left(5k^2+k+403\right)+1\) không chia hết cho 5
+) Xét n=5k+1
=>\(n^2+n+2016=\left(5k+1\right)^2+5k+1+2016=25k^2+10k+1+5k+1+2016\)
\(=25k^2+15k+2018=5\left(5k^2+3k+403\right)+3\) không chia hết cho 5
+) Xét n=5k+2
=>\(n^2+n+2016=\left(5k+2\right)^2+5k+2+2016=25k^2+20k+4+5k+2+2016\)
\(=25k^2+25k+2022=5\left(5k^2+5k+404\right)+2\) không chia hết cho 5
+) Xét n=5k+3
=>\(n^2+n+2016=\left(5k+3\right)^2+5k+3+2016=25k^2+30k+9+5k+3+2016\)
\(=25k^2+35k+2028=5\left(5k^2+7k+405\right)+3\) không chia hết cho 5
+) Xét n=5k+4
=>\(n^2+n+2016=\left(5k+4\right)^2+5k+4+2016=25k^2+40k+16+5k+4+2016\)
\(=25k^2+45k+2036=5\left(5k^2+9k+407\right)+1\) không chia hết cho 5
Từ 5 trường hợp trên => đpcm
AI BIẾT LÀM BÀI NÀY CHỈ EM VỚI Ạ!! EM CẢM ƠN ❤
Chứng tỏ rằng:
a) Số có dạng aaa bao giờ cũng chia hết cho 37.
b) Số có dạng ab - ba ( a lớn hơn hoặc bằng b ) bao giờ cũng chia hết cho 9.
c) Với mọi số tự nhiên n thì tích ( n + 3 )( n + 6 ) luôn chia hết cho 2.
a) Ta có 111 chia hết cho 37 mà các số dạng aaa khi nào cũng chia hết cho 111 ⇒ Các số có dạng aaa luôn chia hết cho 37 (ĐPCM)
b) Ta có ab-ba=a.10+b-b.10-a=9.a-9.b=9.(a-b)
Vì 9 chia hết cho 9 ⇒ 9.(a-b) chia hết cho 9 ⇒ ab-ba bao giờ cũng chia hết cho 9 (ĐPCM)
c) Ta có 2 trường hợp n có hạng 2k hoặc 2k+1
+) Nếu n= 2k thì n+6 chia hết cho 2 ⇒ (n+3)(n+6) chia hết cho 2
+) Nếu n= 2k+1 thì n+3 chia hết cho 2 ⇒ (n+3)(n+6) chia hết cho 2
⇒ (n+3)(n+6) chia hết cho 2 với mọi n là số tự nhiên
a) \(\overline{aaa}=100a+10a+a=111a\)
mà \(111=37.3⋮37\)
\(\Rightarrow\overline{aaa}⋮37\left(dpcm\right)\)
b) \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b=9\left(a-b\right)⋮9\left(a\ge b\right)\)
\(\Rightarrow dpcm\)
TEST CHỨNG MINH
1.Chứng minh rằng: Tích 2 số tự nhiên chẵn liên tiếp chia hết cho 8.
2.Cho B=7+72+73+74+75+76+77+78+79.B có chia hết cho 19 ko?Vì sao?
3.a)Tìm số tự nhiên n sao cho: (n+5):hết cho(n+1); (n+8):hết cho(n+3); (n+6):hết cho(n-1); (2n+3):hết cho(3n+1)
b)Chứng tỏ với mọi số tự nhiên n thì (n-2007)(n+2010) là một số chẵn.
bạn chia thành ngắn í,dài khong thích đọc