So sánh : \(\frac{3\sqrt{7}+5\sqrt{2}}{\sqrt{5}}\) và \(6,9\)
\(\sqrt{13}-\sqrt{12}\) và \(\sqrt{7}-\sqrt{6}\)
So Sánh a,\(\frac{3\sqrt{7}+5\sqrt{2}}{\sqrt{5}}\)và 6,9 \(\sqrt{13}-\sqrt{12}\)và \(\sqrt{7}-\sqrt{6}\)
So sánh:
a. \(\frac{3\sqrt{7}+5\sqrt{2}}{\sqrt{5}}\) và \(6,9\)
b. \(\sqrt{13}-\sqrt{12}\) và \(\sqrt{7}-\sqrt{6}\)
so sánh:
1.\(\frac{3\sqrt{7}+5\sqrt{2}}{\sqrt{5}}\)và 6,9
2.\(\sqrt{13}-\sqrt{12}\)và \(\sqrt{7}-\sqrt{6}\)
Bài 1: Tính
A=\(\sqrt{46-6\sqrt{5}}-\sqrt{29-12\sqrt{5}}\)
B=\(\sqrt{13-\sqrt{160}-\sqrt{53+4\sqrt{90}}}\)
C=\(\sqrt{15-6\sqrt{6}}+\sqrt{35-12\sqrt{6}}\)
D=\(\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)
E= \(\sqrt{4-\sqrt{7}}+\sqrt{4+\sqrt{7}}\)
F= \(\sqrt{3+\sqrt{11+6\sqrt{2}}}-\sqrt{5+2\sqrt{6}}\)
G=\(\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)
Bài 2: so sánh
a) \(\sqrt{24}+\sqrt{45}\) và 12
b) \(\sqrt{37}-\sqrt{15}\) và 2
c) \(\sqrt{16}\) và \(\sqrt{15}\times\sqrt{17}\)
d) 8 và \(\sqrt{15}+\sqrt{17}\)
Bài 2 :
a,\(\sqrt{24}+\sqrt{45}< \sqrt{25}+\sqrt{49}=5+7=12=>\sqrt{24}+\sqrt{45}< 12\)
b. \(\sqrt{37}-\sqrt{15}>\sqrt{36}-\sqrt{16}=6-4=2=>\sqrt{37}-\sqrt{15}>2\)
c, \(\sqrt{15}.\sqrt{17}>\sqrt{15}.\sqrt{16}>\sqrt{16}=>\sqrt{15}.\sqrt{17}>\sqrt{16}\)
so sánh
\(\sqrt{2}+\sqrt{3}\) và 2
\(\sqrt{8}+\sqrt{5}\) và \(\sqrt{7}-\sqrt{6}\)
\(\left(\sqrt{2}+\sqrt{3}\right)^2=5+2\sqrt{6}>2^2=4\left(5>4\right)\\ \Leftrightarrow\sqrt{2}+\sqrt{3}>2\)
\(\left(\sqrt{8}+\sqrt{5}\right)^2=13+2\sqrt{40};\left(\sqrt{7}-\sqrt{6}\right)^2=13-2\sqrt{42}\\ 2\sqrt{40}>0>-2\sqrt{42}\\ \Leftrightarrow13+2\sqrt{40}>13-2\sqrt{42}\\ \Leftrightarrow\left(\sqrt{8}+\sqrt{5}\right)^2>\left(\sqrt{7}-\sqrt{6}\right)^2\\ \Leftrightarrow\sqrt{8}+\sqrt{5}>\sqrt{7}-\sqrt{6}\)
\(\sqrt{2}\) + \(\sqrt{3}\) > 2
So sánh hai số sau:
\(\sqrt{6+2\sqrt{5}}-\sqrt{5}\) và \(\sqrt[3]{7+5\sqrt{2}}-\sqrt{2}\)
\(A=\sqrt{6+2\sqrt{5}}-\sqrt{5}=\sqrt{5}+1-\sqrt{5}=1\)
\(B=\sqrt[3]{7+5\sqrt{2}}-\sqrt{2}=\sqrt{2}+1-\sqrt{2}=1\)
Do đó: A=B
\(\sqrt{6+2\sqrt{5}}-\sqrt{5}=\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{5}=\left|\sqrt{5}+1\right|-\sqrt{5}=1\)
\(\sqrt[3]{7+5\sqrt{2}}-\sqrt{2}=\sqrt[3]{\left(\sqrt{2}\right)^3+1^3+3.2+3\sqrt{2}}-\sqrt{2}=\sqrt[3]{\left(\sqrt{2}+1\right)^3}-\sqrt{2}=\sqrt{2}+1-\sqrt{2}=1\)
--> Bằng nhau
1/ \(\frac{2}{3-\sqrt{7}}\sqrt{\frac{6\sqrt{2}-2\sqrt{14}}{3\sqrt{2}+\sqrt{14}}}\)
2/ \(\sqrt{6+2\sqrt{\sqrt{5}-\sqrt{13-\sqrt{48}}}}\)
3/ \(\frac{\sqrt{3-2\sqrt{2}}}{\sqrt{17-12\sqrt{2}}}-\frac{\sqrt{3+2\sqrt{2}}}{\sqrt{17+12\sqrt{2}}}\)
4/ \(\frac{24}{\sqrt{7}+1}+\frac{4}{3+\sqrt{7}}-\frac{3}{\sqrt{7}+2}\left(4-\sqrt{7}\right)\)
5/ \(\sqrt{7-3\sqrt{5}}\left(7+3\sqrt{5}\right)\left(3\sqrt{2}+\sqrt{10}\right)\)
1. Tính:
a) \(\frac{\sqrt{7}-5}{2}-\frac{6-2\sqrt{7}}{4}+\frac{6}{\sqrt{7}-2}-\frac{5}{4+\sqrt{7}}\)
b) \(\frac{2}{\sqrt{6}-2}+\frac{2}{\sqrt{6}+2}+\frac{5}{\sqrt{6}}\)
c) \(\frac{1}{\sqrt{3}}+\frac{1}{3\sqrt{2}}+\frac{1}{\sqrt{3}}\sqrt{\frac{5}{12}-\frac{1}{\sqrt{6}}}\)
d) \(\frac{2\sqrt{3-\sqrt{3+\sqrt{13+\sqrt{48}}}}}{\sqrt{6}-\sqrt{2}}\)
Bài 45 (trang 27 SGK Toán 9 Tập 1)
So sánh
a) $3 \sqrt{3}$ và $\sqrt{12}$ ; b) $7$ và $3 \sqrt{5}$ ;
c) $\dfrac{1}{3} \sqrt{51}$ và $\dfrac{1}{5} \sqrt{150}$ ; d) $\dfrac{1}{2} \sqrt{6}$ và $6 \sqrt{\dfrac{1}{2}}$.
a) 3\(\sqrt{3}\)=\(\sqrt{27}\)>\(\sqrt{12}\)
c) \(\frac{1}{3}\)\(\sqrt{51}\)=\(\sqrt{\frac{51}{9}}\)<\(\frac{1}{5}\)\(\sqrt{150}\)=\(\sqrt{\frac{150}{25}}\)=\(\sqrt{6}\)
b) 3\(\sqrt{5}\)=\(\sqrt{45}\)< 7=\(\sqrt{49}\)
d) \(\frac{1}{2}\sqrt{6}\)=\(\sqrt{\frac{6}{4}}\)=\(\sqrt{\frac{3}{2}}\)< 6\(\sqrt{\frac{1}{2}}\)=\(\sqrt{\frac{36}{2}}\)=\(\sqrt{18}\)
a) Ta có:
Vì nên
Vậy .
b) Ta có:
Vì nên
Vậy .
nên
.
a) \(3\sqrt{3}=\sqrt{9}.\sqrt{3}=\sqrt{27}>\sqrt{12}\)
b) \(3\sqrt{5}=\sqrt{9}.\sqrt{5}=\sqrt{45}< \sqrt{49}=7\)
c) \(\dfrac{1}{3}\sqrt{51}=\sqrt{\dfrac{1}{9}}.\sqrt{51}=\sqrt{\dfrac{51}{9}}=\sqrt{\dfrac{17}{3}}< \sqrt{6}=\dfrac{1}{5}\sqrt{150}\)
d) \(\dfrac{1}{2}\sqrt{6}=\sqrt{\dfrac{3}{2}}< \sqrt{18}=6\sqrt{\dfrac{1}{2}}\)