Những câu hỏi liên quan
Phan Thị Hà Vy
Xem chi tiết
Thanh Tùng DZ
26 tháng 4 2020 lúc 8:42

Ta có : \(\frac{x}{x^2-yz+2010}+\frac{y}{y^2-xz+2010}+\frac{z}{z^2-xy+2010}\)

\(=\frac{x^2}{x^3-xyz+2010x}+\frac{y^2}{y^3-xyz+2010y}+\frac{z^2}{z^3-xyz+2010z}\)

\(\ge\frac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+2010\left(x+y+z\right)}=\frac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+3\left(xy+yz+xz\right)\left(x+y+z\right)}\)

\(=\frac{\left(x+y+z\right)^2}{x^3+y^3+z^3+3xy^2+3x^2y+3x^2z+3xz^2+3y^2z+3yz^2}=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^3}=\frac{1}{x+y+z}\)

Khách vãng lai đã xóa
Phương Dương
Xem chi tiết
Phương Dương
7 tháng 2 2021 lúc 19:39

giúp mình với nhé!

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
Xem chi tiết
Vương Đức Hà
28 tháng 7 2020 lúc 15:42

ủa đây là toám lớp 1 hả anh

Khách vãng lai đã xóa
Phan Nghĩa
28 tháng 7 2020 lúc 15:45

cauchy phần mẫu @@

Khách vãng lai đã xóa
WTFシSnow
28 tháng 7 2020 lúc 15:49

Forever_Alone tên là Anh nhưng ko bt họ

Khách vãng lai đã xóa
Trần Nguyễn Khánh Linh
Xem chi tiết
Trần Hữu Ngọc Minh
20 tháng 10 2017 lúc 16:47

vì có 1 chút nhầm lẫn nên giờ mk mới ra mong bạn thứ lỗi

bài 1

\(\Leftrightarrow\frac{4a^4}{2a^3+2a^2b^2}+\frac{4b^4}{2b^3+2c^2b^2}+\frac{4c^4}{2c^3+2a^2c^2}\)

\(\ge\frac{\left(2a^2+2b^2+2c^2\right)^2}{2a^3+2b^3+2c^3+2a^2b^2+2c^2b^2+2a^2c^2}\)

\(\ge\frac{36}{a^4+a^2+b^4+b^2+c^4+c^2+2a^2b^2+2c^2b^2+2a^2c^2}\)

\(=\frac{36}{\left(a^2+b^2+c^2\right)^2+a^2+b^2+c^2}=3\ge a+b+c\)

Dấu bằng xảy ra khi \(a=b=c=1\)

Kiệt Nguyễn
26 tháng 4 2020 lúc 8:22

Bài 2 là chuyên Bình Thuận, 2016-2017

Áp dụng bất đẳng thức Cauchy – Schwarz, ta có:

\(\frac{xy}{x^2+yz+zx}\le\frac{xy\left(y^2+yz+zx\right)}{\left(x^2+yz+zx\right)\left(y^2+yz+zx\right)}\le\frac{xy\left(y^2+yz+zx\right)}{\left(xy+yz+zx\right)^2}\)

Tương tự: \(\frac{yz}{y^2+zx+xy}\le\frac{xy\left(z^2+zx+xy\right)}{\left(xy+yz+zx\right)^2}\);\(\frac{zx}{z^2+xy+yz}\le\frac{zx\left(x^2+xy+yz\right)}{\left(xy+yz+zx\right)^2}\)

Cộng từng vế của 3 BĐT trên. ta được:

\(VT\le\frac{\left(x^2+y^2+z^2\right)\left(xy+yz+zx\right)}{\left(xy+yz+zx\right)^2}=\frac{x^2+y^2+z^2}{xy+yz+zx}\)

Đẳng thức xảy ra khi x = y = z

Khách vãng lai đã xóa
dekhisuki
Xem chi tiết
Isolde Moria
Xem chi tiết
Akai Haruma
14 tháng 2 2017 lúc 0:33

Lời giải:

Để cho đẹp, đổi \((xy,yz,xz)\mapsto (a,b,c)\) suy ra \(a+b+c=1\)

BĐT cần chứng minh tương đương với :

\(A=\frac{1}{a+b+c+a+\frac{bc}{a}}+\frac{1}{a+b+c+b+\frac{ac}{b}}+\frac{1}{a+b+c+c+\frac{ab}{c}}\leq \frac{9}{5}\)

\(\Leftrightarrow A=\frac{a}{2a^2+ab+bc+ac}+\frac{b}{2b^2+ab+bc+ac}+\frac{c}{2c^2+ab+bc+ac}\leq \frac{9}{5}\)

\(\Leftrightarrow A=\sum \frac{a(ab+bc+ca)}{2a^2+ab+bc+ac}\leq \frac{9(ab+bc+ac)}{5}\)

Để ý rằng \(A=\sum \left ( a-\frac{2a^3}{2a^2+ab+bc+ac} \right )=1-\sum \frac{2a^3}{2a^2+ab+bc+ac}\)

Cauchy-Schwarz:

\(\sum \frac{2a^3}{2a^2+ab+bc+ac}=\sum \frac{2a^4}{2a^3+a^2b+abc+a^2c}\geq \frac{2(a^2+b^2+c^2)^2}{2(a^3+b^3+c^3)+ab(a+b)+bc(b+c)+ca(a+c)+3abc}\)

Giờ đặt \(ab+bc+ac=q,abc=r\)

Phân tích:

\(2(a^3+b^3+c^3)+\sum ab(a+b)+3abc=2(a^3+b^3+c^3-3abc)+(a+b+c)(ab+bc+ac)+6abc\)

\(=2(a+b+c)(a^2+b^2+c^2-ab-bc-ac)+ab+bc+ac+6abc\)

\(=2(a^2+b^2+c^2)-(ab+bc+ac)+6abc=2-5q+6r\)

Do đó \(A\leq 1-\frac{2(1-2q)^2}{2-5q+6r}\). Giờ chỉ cần chỉ ra \(1-\frac{2(1-2q)^2}{2-5q+6r}\leq \frac{9q}{5}\Leftrightarrow q(3-5q)+6r(9q-5)\geq 0\)

Theo AM-GM dễ thấy

\(q^2=(ab+bc+ac)^2\geq 3abc(a+b+c)=3r\)

\(1=(a+b+c)^2\geq 3(ab+bc+ac)\Rightarrow q\leq \frac{1}{3}\)

\(\Rightarrow 9q-5<0\rightarrow 6r(9q-5)\geq 2q^2(9q-5)\) (đổi dấu)

\(\Rightarrow q(3-5q)+6r(9q-5)\geq q(3-5q)+2q^2(9q-5)=q(2q-1)(3q-1)\geq 0\)

BĐT trên hiển nhiên đúng vì \(q\leq \frac{1}{3}<\frac{1}{2}\Rightarrow (2q-1)(3q-1)\geq 0\)

Chứng minh hoàn tất.

Dấu bằng xảy ra khi \(a=b=c=\frac{1}{3}\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)

P/s: Làm BĐT bần cùng lắm mới xài pqr, không ngờ phải xài thật :)

Isolde Moria
12 tháng 2 2017 lúc 21:20

Sao tag éo dc :|

Akai HarumaNguyễn Huy ThắngTrần Việt LinhHoàng Lê Bảo Ngọc

Ngọc Anh
Xem chi tiết
Conan Lê Minh
Xem chi tiết
Phùng Quang Thịnh
Xem chi tiết
Anh Mai Quốc
14 tháng 3 2020 lúc 20:13

Áp dụng BĐT AM-GM: $VP\leq \frac{25}{yz+zx+xy+4}$

Cần c/m: $\frac{x+1}{y+1}+\frac{y+1}{z+1}+\frac{z+1}{x+1}$\leq \frac{25}{yz+zx+xy+4}$

$\Leftrightarrow (yz+zx+xy)(xy^{2}+yz^{2}+zx^{2})+4(xy^{2}+yz^{2}+zx^{2})\leq 25xyz+4(yz+zx+xy)+16$

BĐT trên sẽ được c/m nếu c/m được: $xy^{2}+yz^{2}+zx^{2}\leq 4$.

KMTTQ, g/sử y nằm giữa x và z. $\Rightarrow x(x-y)(y-z)\geq 0$

$\Leftrightarrow xy^{2}+yz^{2}+zx^{2}\leq y(x^{2}+xz+z^{2})\leq y(x+z)^{2}$

Đến đây áp dụng BĐT AM-GM:

$y(x+z)^{2}=4.y.(\frac{x+z}{2})(\frac{x+z}{2})\leq \frac{4(y+\frac{x+z}{2}+\frac{x+z}{2})^{3}}{27}=\frac{4(x+y+z)^{3}}{27}=4$ (đpcm)

Dấu bằng xảy ra khi, chẳng hạn $x=0;y=1;z=2$

Khách vãng lai đã xóa
Tran Le Khanh Linh
12 tháng 4 2020 lúc 15:52

Áp dụng BĐT AM-GM và BĐT Rearrangement  ta có:

\(VT=\frac{x+1}{y+1}+\frac{y+1}{z+1}+\frac{z+1}{x+1}\)

\(=\frac{\left(x+y+z\right)^2+3\left(x+y+z\right)+xy^2+yz^2+zx^2+3}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)\(\le\frac{21+y\left(x+z\right)^2}{3\sqrt[3]{4\left(xy+yz+xz\right)}}\le\frac{21+\frac{\left(\frac{2\left(x+y+z\right)}{3}\right)^3}{2}}{3\sqrt[3]{4\left(xy+yz+zx\right)}}=\frac{21+4}{3\sqrt[3]{4\left(xy+yz+zx\right)}}=\frac{25}{3\sqrt[3]{4\left(xy+yz+zx\right)}}\)

Dấu "=" xảy ra <=> (x;y;z)=(2;1;0) và hoán vị của nó

Khách vãng lai đã xóa
Phan Đức Long
16 tháng 5 2020 lúc 20:22

xml hkjmf,gkjbhvn jbkvmcbnvdyjxnbv hjgfvchjwbfhyergfvyug h ghbf vchdsvhdc ghv eucbtrgvtcfrtfvgtcb tybk cjvh dgsx     hjutygfvhyfhefrd cr fb kosciugyrturikjht54tr273r6734vn cjhvdfbv dfjbgerutjh37347t567  t gn fvbrhkjbfghty 66u 67gfbrhtb vbnbdffrhg ';\ hvgn hvbhzxn cb gvfycbher 74y6t5rbfvnhsgt hbgvdhcvhjgey6t5u gewytdfjbxjhdv bn 6t5675t47t5648b   gryjhvdhybgfvdghv d vdfstrcdgvcc ghfvdshvh bbv3rt364tr  bgryjhvbnh vznhbbcv  nbmhfbvdghbv mhdfbdschmaewugugf ygvrfyug s g dg vyga4ut53746r87hyu  rf5ygygcsrbv sdbv x vc  bgyergty4gfytrfygtyfgrgyfyjugrfauygfugdv euygt674y4375y74

Khách vãng lai đã xóa