Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
huynh van duong
Xem chi tiết
Lê Hoài Phương
Xem chi tiết
๖ۣۜLuyri Vũ๖ۣۜ
Xem chi tiết
Đặng Ngọc Quỳnh
18 tháng 10 2020 lúc 12:40

Vì xyz=1\(\Rightarrow x^2\left(y+z\right)\ge2x^2\sqrt{yz}=2x\sqrt{x}\)

Tương tự \(y^2\left(z+x\right)\ge2y\sqrt{y};z^2=\left(x+y\right)\ge2z\sqrt{z}\)

\(\Rightarrow P\ge\frac{2x\sqrt{x}}{y\sqrt{y}+2z\sqrt{z}}+\frac{2y\sqrt{y}}{z\sqrt{z}+2x\sqrt{x}}+\frac{2z\sqrt{z}}{x\sqrt{x}+2y\sqrt{y}}\)

Đặt \(x\sqrt{x}+2y\sqrt{y}=a;y\sqrt{y}+2z\sqrt{z}=b;z\sqrt{z}+2x\sqrt{x}=c\)

\(\Rightarrow x\sqrt{x}=\frac{4c+a-2b}{9};y\sqrt{y}=\frac{4a+b-2c}{9};z\sqrt{z}=\frac{4b+c-2a}{9}\)

\(\Rightarrow P\ge\frac{2}{9}\left(\frac{4c+a-2b}{b}+\frac{4a+b-2c}{a}+\frac{4b+c-2a}{b}\right)\)

\(=\frac{2}{9}\text{ }\left[4\left(\frac{c}{b}+\frac{a}{c}+\frac{b}{a}\right)+\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-6\right]\ge\frac{2}{9}\left(4.3+2-6\right)=2\)

Min P =2 khi và chỉ khi a=b=c khi va chỉ khi x=y=z=1

Khách vãng lai đã xóa
Nguyễn Minh Khuê
Xem chi tiết
Trần Thị Bảo Trân
2 tháng 10 2016 lúc 18:44

Ta có \(x+y+z=1\Rightarrow x+y=1-z,\) ta có:

\(\frac{x+y}{\sqrt{xy+z}}=\frac{1-z}{\sqrt{xy+1-x-y}}=\frac{1-z}{\sqrt{\left(1-x\right)\left(1-y\right)}}\)

\(\frac{y+z}{\sqrt{yz+x}}=\frac{1-x}{\sqrt{yz+1-y-z}}=\frac{1-x}{\sqrt{\left(1-y\right)\left(1-z\right)}}\)

\(\frac{z+x}{\sqrt{zx+y}}=\frac{1-y}{\sqrt{zx+1-x-z}}=\frac{1-y}{\sqrt{\left(1-x\right)\left(1-z\right)}}\)

Khi đó \(P=\frac{x+y}{\sqrt{xy+z}}+\frac{y+z}{\sqrt{yz+x}}+\frac{z+x}{\sqrt{zx+y}}=\frac{1-z}{\sqrt{\left(1-x\right)\left(1-y\right)}}+\frac{1-x}{\sqrt{\left(1-y\right)\left(1-z\right)}}+\frac{1-y}{\sqrt{\left(1-x\right)\left(1-z\right)}}\)

               \(\ge3\sqrt[3]{\frac{1-z}{\left(1-x\right)\left(1-y\right)}\times\frac{1-x}{\left(1-y\right)\left(1-z\right)}\times\frac{1-y}{\left(1-x\right)\left(1-z\right)}}=3\)

Vậy \(MinP=3\) đạt được khi \(x=y=z=\frac{1}{3}\) 

Kuro Kazuya
14 tháng 5 2017 lúc 23:51

\(P=\dfrac{x+y}{\sqrt{xy+z}}+\dfrac{y+z}{\sqrt{yz+x}}+\dfrac{z+x}{\sqrt{xz+y}}\)

\(P=\dfrac{x+y}{\sqrt{xy+\left(x+y+z\right)z}}+\dfrac{y+z}{\sqrt{yz+\left(x+y+z\right)x}}+\dfrac{x+z}{\sqrt{zx+\left(x+y+z\right)y}}\)

\(P=\dfrac{x+y}{\sqrt{xy+xz+yz+z^2}}+\dfrac{y+z}{\sqrt{yz+x^2+xy+xz}}+\dfrac{x+z}{\sqrt{xz+xy+y^2+yz}}\)

\(P=\dfrac{x+y}{\sqrt{\left(x+z\right)\left(y+z\right)}}+\dfrac{y+z}{\sqrt{\left(x+y\right)\left(x+z\right)}}+\dfrac{x+z}{\sqrt{\left(x+y\right)\left(y+z\right)}}\)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow P\ge3\sqrt[3]{\dfrac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{\sqrt{\left(x+y\right)^2\left(y+z\right)^2\left(x+z\right)^2}}}=3\sqrt[3]{\dfrac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{\left(x+y\right)\left(y+z\right)\left(x+z\right)}}=3\)

\(\Rightarrow P\ge3\)

Vậy \(P_{min}=3\)

Dấu " = " xảy ra khi \(x=y=z=\dfrac{1}{3}\)

tống thị quỳnh
Xem chi tiết
Trà My
30 tháng 5 2017 lúc 23:18

\(M^2=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{2xy}{\sqrt{yz}}+\frac{2yz}{\sqrt{zx}}+\frac{2xz}{\sqrt{yz}}=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{2x\sqrt{y}}{\sqrt{z}}+\frac{2y\sqrt{z}}{\sqrt{x}}+\frac{2z\sqrt{x}}{\sqrt{y}}\)

Áp dụng bđt Cô-si: \(\frac{x^2}{y}+\frac{x\sqrt{y}}{\sqrt{z}}+\frac{x\sqrt{y}}{\sqrt{z}}+z\ge4\sqrt[4]{\frac{x^2}{y}.\frac{x\sqrt{y}}{\sqrt{z}}.\frac{x\sqrt{y}}{\sqrt{z}}.z}=4x\)

tương tự \(\frac{y^2}{z}+\frac{y\sqrt{z}}{\sqrt{x}}+\frac{y\sqrt{z}}{\sqrt{x}}+x\ge4y\);\(\frac{z^2}{x}+\frac{z\sqrt{x}}{\sqrt{y}}+\frac{z\sqrt{x}}{\sqrt{y}}+y\ge4z\)

=>\(M^2+x+y+z\ge4\left(x+y+z\right)\Rightarrow M^2\ge3\left(x+y+z\right)\ge3.12=36\Rightarrow M\ge6\)

Dấu "=" xảy ra khi x=y=z=4

Vậy minM=6 khi x=y=z=4

Trà My
30 tháng 5 2017 lúc 22:56

b1: Áp dụng bđt Cauchy Schwarz dạng Engel ta được:

\(P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+x+z+y+y}=\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}=\frac{2}{2}=1\)

=>minP=1 <=> x=y=z=2/3

bui thai hoc
Xem chi tiết
tth_new
29 tháng 9 2019 lúc 9:18

Theo em bài này chỉ có min thôi nhé!

Rất tự nhiên để khử căn thức thì ta đặt \(\left(\sqrt{x};\sqrt{y};\sqrt{z}\right)=\left(a;b;c\right)\ge0\)

Khi đó \(M=\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\) với abc = \(\sqrt{xyz}=1\) và a,b,c > 0

Dễ thấy \(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)

(chuyển vế qua dùng hằng đẳng thức là xong liền hà)

Do đó \(2M=\frac{a^3+b^3}{a^2+ab+b^2}+\frac{b^3+c^3}{b^2+bc+c^2}+\frac{c^3+a^3}{c^2+ca+a^2}\)

Đến đây thì chứng minh \(\frac{a^3+b^3}{a^2+ab+b^2}\ge\frac{1}{3}\left(a+b\right)\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\left(a+b\right)\ge0\)(đúng)

Áp dụng vào ta thu được: \(2M\ge\frac{2}{3}\left(a+b+c\right)\Rightarrow M\ge\frac{1}{3}\left(a+b+c\right)\ge\sqrt[3]{abc}=1\)

Vậy...

P/s: Ko chắc nha!

bui thai hoc
30 tháng 9 2019 lúc 9:59

dit me may 

Lãnh Hàn Thiên Kinz
19 tháng 7 2020 lúc 19:01

bạn bui thai hoc sao lại cmt linh tinh vậy :)) bạn ko có học thức à :> mà ý bạn cmt như vậy là sao hả ? 

Khách vãng lai đã xóa
Đệ Ngô
Xem chi tiết
Nguyễn Minh Đăng
15 tháng 5 2021 lúc 14:57

Áp dụng bất đẳng thức Minkowski ta có:

\(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\)

\(\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{9}{x+y+z}\right)^2}=\sqrt{\left(x+y+z\right)^2+\frac{81}{\left(x+y+z\right)^2}}\)

\(=\sqrt{\left[\left(x+y+z\right)^2+\frac{1}{\left(x+y+z\right)^2}\right]+\frac{80}{\left(x+y+z\right)^2}}\)

\(\ge\sqrt{2\sqrt{\left(x+y+z\right)^2\cdot\frac{1}{\left(x+y+z\right)^2}}+\frac{80}{1}}=\sqrt{82}\)

Dấu "=" xảy ra khi: \(x=y=z=\frac{1}{3}\)

Khách vãng lai đã xóa
Nguyễn VIP 5 sao
19 tháng 5 2021 lúc 21:32

Áp dụng bất đẳng thức Minkowski ta có:

√x2+1x2 +√y2+1y2 +√z2+1z2 ≥√(x+y+z)2+(1x +1y +1z )2

≥√(x+y+z)2+(9x+y+z )2=√(x+y+z)2+81(x+y+z)2 

=√[(x+y+z)2+1(x+y+z)2 ]+80(x+y+z)2 

≥√2√(x+y+z)2·1(x+y+z)2 +801 =√82

Dấu "=" xảy ra khi: x=y=z=13 

Khách vãng lai đã xóa
nguyen van bi
Xem chi tiết
Nguyễn Thu Thủy
Xem chi tiết
Edogawa Conan
27 tháng 7 2021 lúc 15:42

Ta có: \(P=\frac{\sqrt{x}}{1+x+xy}+\frac{\sqrt{y}}{1+y+yz}+\frac{\sqrt{z}}{1+z+xz}\)

\(P=\frac{\sqrt{x}}{xy+x+1}+\frac{x\sqrt{y}}{x+xy+xyz}+\frac{xy\sqrt{z}}{xy+xyz+x^2yz}\)

\(P=\frac{\sqrt{x}}{xy+x+1}+\frac{x\sqrt{y}}{xy+x+1}+\frac{\sqrt{xy}.\sqrt{xyz}}{xy+x+1}\)

\(P=\frac{\sqrt{x}+x\sqrt{y}+\sqrt{xy}}{xy+x+1}\le\frac{\frac{x+1}{2}+\frac{x\left(y+1\right)}{2}+\frac{xy+1}{2}}{xy+x+1}\) (bđt cosi)

=> \(P\le\frac{x+1+xy+x+xy+1}{2\left(xy+x+1\right)}=\frac{2\left(xy+x+1\right)}{2\left(xy+x+1\right)}=1\)

Dấu "=" xảy ra<=> x =  y = z = 1

Vậy MaxP = 1 <=> x = y = z = 1

Khách vãng lai đã xóa