Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
camcon
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 12 2021 lúc 23:46

\(\sqrt{4x+2\sqrt{x}+1}\le\sqrt{4x+\dfrac{1}{2}\left(2^2+x\right)+1}=\sqrt{\dfrac{9x}{2}+3}\)

\(=\dfrac{1}{\sqrt{21}}.\sqrt{21}.\sqrt{\dfrac{9x}{2}+3}\le\dfrac{1}{2\sqrt{21}}\left(21+\dfrac{9x}{2}+3\right)=\dfrac{1}{2\sqrt{21}}\left(\dfrac{9x}{2}+24\right)\)

Tương tự và cộng lại:

\(A\le\dfrac{1}{2\sqrt{21}}\left(\dfrac{9}{2}\left(x+y+z\right)+72\right)=3\sqrt{21}\)

\(A_{max}=3\sqrt{21}\) khi \(x=y=z=4\)

Xyz OLM
30 tháng 12 2021 lúc 23:51

\(A=1\sqrt{4x+2\sqrt{x}+1}+1.\sqrt{4y+2\sqrt{y}+1}+1\sqrt{4z+2\sqrt{z}+1}\)

\(\le\sqrt{\left(1+1+1\right)\left(4\left(x+y+z\right)+2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+3\right)}\)

\(=\sqrt{3.\left[51+\dfrac{4\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)}{2}\right]}\)

\(\le\sqrt{3.\left[51+\dfrac{x+y+z+12}{2}\right]}\)

\(=\sqrt{189}\)

Dấu "=" xảy ra <=> x = y = z = 4

Xuan Xuannajimex
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 4 2021 lúc 20:37

\(P=\sqrt{x\left(x+y+z\right)+yz}+\sqrt{y\left(x+y+z\right)+xz}+\sqrt{z\left(x+y+z\right)+xy}\)

\(P=\sqrt{\left(x+y\right)\left(x+z\right)}+\sqrt{\left(x+y\right)\left(y+z\right)}+\sqrt{\left(x+z\right)\left(y+z\right)}\)

\(P\le\dfrac{1}{2}\left(x+y+x+z\right)+\dfrac{1}{2}\left(x+y+y+z\right)+\dfrac{1}{2}\left(x+z+y+z\right)\)

\(P\le2\left(x+y+z\right)=2\)

\(P_{max}=2\) khi \(x=y=z=\dfrac{1}{3}\)

Tuệ San
Xem chi tiết
Phan thu trang
Xem chi tiết
Lightning Farron
19 tháng 2 2017 lúc 22:57

Đk: \(x\ge2;y\ge-1;0< x+y\le9\)

Ta có: \(\sqrt{2x-4}+\frac{1}{\sqrt{2}}\sqrt{2(y+1)}\leq\sqrt{3(x+y-1)}\)

Từ giả thiết suy ra

\(x+y-1=\sqrt{2x-4}+\sqrt{y+1}\Rightarrow x+y-1\leq\sqrt{3(x+y-1)}\)

Vậy \(1\leq(x+y)\leq4\). Đặt \(\left\{\begin{matrix}t=x+y\\t\in\left[1;4\right]\end{matrix}\right.\) ta có:

\(P=t^2-\sqrt{9-t}+\frac{1}{\sqrt{t}}\)

\(P'\left(t\right)=2t+\frac{1}{2\sqrt{9-t}}-\frac{1}{2t\sqrt{t}}>0\forall t\in\left[1;4\right]\)

Vậy \(P\left(t\right)\) đồng biến trên \([1;4]\)

Suy ra \(P_{max}=P\left(4\right)=4^2-\sqrt{9-4}+\frac{1}{\sqrt{4}}=\frac{33-2\sqrt{5}}{2}\) khi \(\left\{\begin{matrix}x=4\\y=0\end{matrix}\right.\)

\(P_{min}=P\left(1\right)=2-2\sqrt{2}\) khi \(\left\{\begin{matrix}x=2\\y=-1\end{matrix}\right.\)

Minh Đức
Xem chi tiết
missing you =
16 tháng 7 2021 lúc 19:03

\(=>A=\dfrac{\sqrt{x-1}}{x}+\dfrac{\sqrt{y-2}}{y}+\dfrac{\sqrt{z-3}}{z}\)

áp dụng BĐT AM-GM

\(=>\sqrt{x-1}\le\dfrac{x-1+1}{2}=\dfrac{x}{2}\)

\(=>\dfrac{\sqrt{x-1}}{x}\le\dfrac{\dfrac{x}{2}}{x}=\dfrac{1}{2}\left(1\right)\)

có \(\dfrac{\sqrt{y-2}}{y}=\dfrac{\sqrt{\left(y-2\right)2}}{\sqrt{2}.y}\)

\(=>\sqrt{\left(y-2\right)2}\le\dfrac{y-2+2}{2}=\dfrac{y}{2}\)

\(=>\dfrac{\sqrt{\left(y-2\right)2}}{\sqrt{2}.y}\le\dfrac{\dfrac{y}{2}}{\sqrt{2}.y}=\dfrac{1}{2\sqrt{2}}\left(2\right)\)

tương tự \(=>\dfrac{\sqrt{z-3}}{z}\le\dfrac{1}{2\sqrt{3}}\left(3\right)\)

(1)(2)(3)\(=>A\le\dfrac{1}{2}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}\)

 

 

 

 

 

Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
nakroth
Xem chi tiết
Girl
14 tháng 5 2019 lúc 12:48

Ta có: \(x+y+z=1\Rightarrow\hept{\begin{cases}\sqrt{x+yz}=\sqrt{x\left(x+y+z\right)+yz}=\sqrt{\left(x+y\right)\left(x+z\right)}\\\sqrt{y+xz}=\sqrt{y\left(x+y+z\right)+xz}=\sqrt{\left(x+y\right)\left(y+z\right)}\\\sqrt{z+xy}=\sqrt{z\left(x+y+z\right)+xy}=\sqrt{\left(x+z\right)\left(y+z\right)}\end{cases}}\)

Ta viết lại A

\(A=\sqrt{\left(x+y\right)\left(x+z\right)}+\sqrt{\left(x+y\right)\left(y+z\right)}+\sqrt{\left(y+z\right)\left(x+z\right)}\)

Áp dụng bđt AM-GM:

\(A\le\frac{x+y+x+z+x+y+y+z+y+z+x+z}{2}=2\)

\("="\Leftrightarrow x=y=z=\frac{1}{3}\)

Trần Thị Hà Giang
14 tháng 5 2019 lúc 13:08

\(x+yz=x\left(x+y+z\right)+yz\)

\(=x^2+xy+xz+yz\)

\(=x\left(x+y\right)+z\left(x+y\right)=\left(x+z\right)\left(x+y\right)\)

+ Tương tự : \(y+xz=\left(x+y\right)\left(y+z\right)\)

\(z+xy=\left(x+z\right)\left(y+z\right)\)

+ Theo bđt AM-GM : \(\sqrt{\left(x+y\right)\left(x+z\right)}\le\frac{x+y+x+z}{2}\)

\(\Rightarrow\sqrt{\left(x-1\right)\left(y-1\right)}\le\frac{2x+y+z}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x+y=x+z\Leftrightarrow y=z\)

+ Tương tự ta cm đc : 

\(\sqrt{\left(x+y\right)\left(y+z\right)}\le\frac{x+2y+z}{2}\).   Dấu "=" xảy ra \(\Leftrightarrow x=z\)

\(\sqrt{\left(x+z\right)\left(y+z\right)}\le\frac{x+y+2z}{2}\).   Dấu "=" xảy ra \(\Leftrightarrow x=y\)

Do đó : \(A\le\frac{4\left(x+y+z\right)}{2}=2\)

A = 2 \(\Leftrightarrow x=y=z=\frac{1}{3}\)

Vậy Max A = 2 \(\Leftrightarrow x=y=z=\frac{1}{3}\)

Bùi Vương TP (Hacker Nin...
14 tháng 5 2019 lúc 20:44

x+yz=x(x+y+z)+yz

=x2+xy+xz+yz

=x(x+y)+z(x+y)=(x+z)(x+y)

+ Tương tự : y+xz=(x+y)(y+z)

z+xy=(x+z)(y+z)

+ Theo bđt AM-GM : √(x+y)(x+z)≤x+y+x+z2 

⇒√(x−1)(y−1)≤2x+y+z2 

Dấu "=" xảy ra ⇔x+y=x+z⇔y=z

+ Tương tự ta cm đc : 

√(x+y)(y+z)≤x+2y+z2 .   Dấu "=" xảy ra ⇔x=z

√(x+z)(y+z)≤x+y+2z2 .   Dấu "=" xảy ra ⇔x=y

Do đó : A≤4(x+y+z)2 =2

A = 2 ⇔x=y=z=13 

Vậy Max A = 2 

Lê Song Phương
Xem chi tiết
Tô Hoàng Long
10 tháng 2 2023 lúc 19:23

không biết :))))

Bùi Minh Huy
Xem chi tiết
Hiếu
1 tháng 3 2018 lúc 22:44

b, Gọi biểu thức đề ra là B

=> Theo bđt cô si ta có : \(B\ge3\sqrt[3]{\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{z^2}\right)\left(z^2+\frac{1}{x^2}\right)}\)

=> \(B\ge3\sqrt[3]{2\cdot\frac{x}{y}\cdot2\cdot\frac{y}{z}\cdot2\cdot\frac{z}{x}}=3\sqrt[3]{8}=6\) 

( Chỗ này là thay \(x^2+\frac{1}{y^2}\ge2\sqrt{\frac{x^2}{y^2}}=2\cdot\frac{x}{y}\) và 2 cái kia tương tự vào )

=> Min B=6

Hiếu
1 tháng 3 2018 lúc 22:37

Theo bđt cô si thì ta có : \(\sqrt{\left(x+y\right)\cdot1}\le\frac{x+y+1}{2}\)

\(\sqrt{\left(z+x\right)\cdot1}\le\frac{z+x+1}{2}\)

\(\sqrt{\left(y+z\right)\cdot1}\le\frac{y+z+1}{2}\)

=> Cộng vế theo vế ta được : \(A\le\frac{2\left(x+y+z\right)+3}{2}=\frac{5}{2}\)

Dấu = xảy ra khi : x+y+z=1 và x+y=1 và y+z=1 và x+z=1

=> \(x=y=z=\frac{1}{3}\)

Vậy ...

Hiếu
1 tháng 3 2018 lúc 22:48

Mình nhầm chỗ câu b, sửa lại là :

\(B\ge3\sqrt[3]{\sqrt{\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{z^2}\right)\left(z^2+\frac{1}{x^2}\right)}}\)

Bạn làm tương tự => \(B\ge3\sqrt{2}\).