Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Đoàn Phương Anh
Xem chi tiết
Hacker Ngui
Xem chi tiết
Võ Hồng Phúc
Xem chi tiết
Nguyễn Linh
Xem chi tiết
Akai Haruma
26 tháng 6 2019 lúc 17:34

Bài 1:

\(A=\sqrt{5-2\sqrt{6}}+\sqrt{5+2\sqrt{6}}=\sqrt{2+3-2\sqrt{2.3}}+\sqrt{2+3+2\sqrt{2.3}}\)

\(=\sqrt{(\sqrt{2}-\sqrt{3})^2}+\sqrt{\sqrt{2}+\sqrt{3})^2}\)

\(=|\sqrt{2}-\sqrt{3}|+|\sqrt{2}+\sqrt{3}|=\sqrt{3}-\sqrt{2}+\sqrt{2}+\sqrt{3}=2\sqrt{3}\)

\(B=(\sqrt{10}+\sqrt{6})\sqrt{8-2\sqrt{15}}\)

\(=(\sqrt{10}+\sqrt{6}).\sqrt{3+5-2\sqrt{3.5}}\)

\(=(\sqrt{10}+\sqrt{6})\sqrt{(\sqrt{5}-\sqrt{3})^2}\)

\(=\sqrt{2}(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})=\sqrt{2}(5-3)=2\sqrt{2}\)

\(C=\sqrt{4+\sqrt{7}}+\sqrt{4-\sqrt{7}}\)

\(C^2=8+2\sqrt{(4+\sqrt{7})(4-\sqrt{7})}=8+2\sqrt{4^2-7}=8+2.3=14\)

\(\Rightarrow C=\sqrt{14}\)

\(D=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{2}\sqrt{3-\sqrt{5}}\)

\(=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{6-2\sqrt{5}}\)

\(=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{5+1-2\sqrt{5.1}}\)

\(=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{(\sqrt{5}-1)^2}\)

\(=(3+\sqrt{5})(\sqrt{5}-1)^2=(3+\sqrt{5})(6-2\sqrt{5})=2(3+\sqrt{5})(3-\sqrt{5})=2(3^2-5)=8\)

Akai Haruma
26 tháng 6 2019 lúc 17:37

Bài 2:

a) Bạn xem lại đề.

b) \(x-2\sqrt{xy}+y=(\sqrt{x})^2-2\sqrt{x}.\sqrt{y}+(\sqrt{y})^2=(\sqrt{x}-\sqrt{y})^2\)

c)

\(\sqrt{xy}+2\sqrt{x}-3\sqrt{y}-6=(\sqrt{x}.\sqrt{y}+2\sqrt{x})-(3\sqrt{y}+6)\)

\(=\sqrt{x}(\sqrt{y}+2)-3(\sqrt{y}+2)=(\sqrt{x}-3)(\sqrt{y}+2)\)

Akai Haruma
26 tháng 6 2019 lúc 17:43

Bài 3:

a) ĐKXĐ:\(x>0; x\neq 1; x\neq 4\)

\(M=\frac{\sqrt{x}-(\sqrt{x}-1)}{(\sqrt{x}-1)\sqrt{x}}:\frac{(\sqrt{x}+1)(\sqrt{x}-1)-(\sqrt{x}+2)(\sqrt{x}-2)}{(\sqrt{x}-2)(\sqrt{x}-1)}\)

\(=\frac{1}{\sqrt{x}(\sqrt{x}-1)}:\frac{(x-1)-(x-4)}{(\sqrt{x}-2)(\sqrt{x}-1)}=\frac{1}{\sqrt{x}(\sqrt{x}-1)}:\frac{3}{(\sqrt{x}-2)(\sqrt{x}-1)}\)

\(\frac{1}{\sqrt{x}(\sqrt{x}-1)}.\frac{(\sqrt{x}-2)(\sqrt{x}-1)}{3}=\frac{\sqrt{x}-2}{3\sqrt{x}}\)

b)

Khi $x=2$ \(M=\frac{\sqrt{2}-2}{3\sqrt{2}}=\frac{1-\sqrt{2}}{3}\)

c)

Để \(M>0\leftrightarrow \frac{\sqrt{x}-2}{3\sqrt{x}}>0\leftrightarrow \sqrt{x}-2>0\leftrightarrow x>4\)

Kết hợp với ĐKXĐ suy ra $x>4$

Nguyễn Thị Thanh Hải
Xem chi tiết
Minh Triều
Xem chi tiết
Trần Thị Loan
17 tháng 10 2015 lúc 11:06

Đặt \(\frac{x}{4}=\frac{y}{7}\) = k => x = 4k; y = 7k ( k khác 0)

Thay vào C ta được: \(C=\frac{\left(1+\sqrt{3}\right)\left(4k\right)^2.7k-\left(2-\sqrt{5}\right).4k.\left(7k\right)^2}{\left(4k\right)^3+\left(7k\right)^3}=\frac{\left(112.\left(1+\sqrt{3}\right)-196.\left(2-\sqrt{5}\right)\right).k^3}{407k^3}\)

\(C=\frac{112+112\sqrt{3}-392+196\sqrt{5}}{407}=\frac{112\sqrt{3} +196\sqrt{5}-280}{407}\)

Phương Anh
Xem chi tiết
Hồng Trinh
22 tháng 5 2016 lúc 22:19

1. \(\begin{cases}x+y+xy\left(2x+y\right)=5xy\\x+y+xy\left(3x-y\right)=4xy\end{cases}\) \(\Leftrightarrow\begin{cases}2y-x=1\\x+y+xy\left(2x+y\right)=5xy\end{cases}\) (trừ 2 vế cho nhau)

\(\Leftrightarrow\begin{cases}x=2y-1\\\left(2y-1\right)+y+\left(2y-1\right)y\left(4y-2+y\right)=5\left(2y-1\right)y\end{cases}\) \(\Leftrightarrow\begin{cases}x=2y-1\\10y^3-19y^2+10y-1=0\end{cases}\) \(\Leftrightarrow\begin{cases}x=1\\y=1\end{cases}\)

Phương Anh
23 tháng 5 2016 lúc 14:24

mk ra câu 1 r b lm giúp mk câu 2,3 đc k

 

Quỳnh Annie
Xem chi tiết
NguyễnĐìnhNhậtTân
18 tháng 7 2016 lúc 16:30

cái này dễ mà

 

ABC
Xem chi tiết
Thiên An
24 tháng 6 2017 lúc 21:59

Thiếu điều kiện xy = 1; x+y khác 0 nhá bn

Bài này tương tự câu 1 ở đây