Giai phương trình :\(\sqrt{x-1}+\sqrt{x^3+x^2+x+1}=1+\sqrt{x^4-1}\)
giai phương trình
(x+1)(x+2) = 3 \(\sqrt{x\left(x+3\right)}\)
(\(\sqrt{x+4}\)-2)(\(\sqrt{4-x}\) +2) = 2x
Đặt x^2+3x=a
=>\(a+2=3\sqrt{a}\)
=>a-3 căn a+2=0
=>(căn a-1)(căn a-2)=0
=>a=1 hoặc a=4
=>x^2+3x=1 hoặc x^2+3x=4
=>(x+4)(x-1)=0 và x^2+3x-1=0
=>\(x\in\left\{1;-4;\dfrac{-3+\sqrt{13}}{2};\dfrac{-3-\sqrt{13}}{2}\right\}\)
Giai phương trình
A) \(\sqrt{2x^2+x+9}+\sqrt{2x^2-x+1}=x+4\)
B) \(\sqrt{x-1}+\sqrt{x^3+x^2+x+1}=1+\sqrt{x^4-1}\)
A) đặt \(\sqrt{2x^2+x+9}=a\) và \(\sqrt{2x^2-x+1}=b\)
thì pt trên trở thành \(a+b=\frac{a^2-b^2}{2}\)
<=> \(a^2-b^2=2a+2b\)
<=> \(\left(a-b\right)\left(a+b\right)-2\left(a+b\right)=0\)
<=> \(\left(a+b\right)\left(a-b-2\right)=0\)
<=> \(\orbr{\begin{cases}a=b\\a=b+2\end{cases}}\)
đến đây bạn thay vào rùi giải nốt nha
B) Đặt \(\sqrt{x-1}=a\) và \(\sqrt{x^3+x^2+x+1}=b\)
==> ab= \(\sqrt{x^4-1}\)
do đó pt trên trở thành \(a+b=ab+1\)
<=> \(\left(a-1\right)\left(1-b\right)=0\)
<=> \(\orbr{\begin{cases}a=1\\b=1\end{cases}}\)
đến đây cũng thay vào nốt rùi giải tiếp nhé bạn
1) Tính giá trị biểu thức:
a)A=\(\sqrt{4+2\sqrt{3}}\)
b) B=\(\dfrac{1}{2-\sqrt{3}}+\dfrac{1}{2+\sqrt{3}}\)
2) Giai phương trình: \(\sqrt{4x-12}+\sqrt{x-3}-\dfrac{1}{3}\sqrt{9x-27}=8\)
3)Tìm x: 2x2-4=8
`a)A=\sqrt{4+2sqrt3}`
`=\sqrt{3+2sqrt3+1}`
`=sqrt{(sqrt3+1)^2}`
`=sqrt3+1`
`B)1/(2-sqrt3)+1/(2+sqrt3)`
`=(2+sqrt3)/(4-3)+(2-sqrt3)/(4-3)`
`=2+sqrt3+2-sqrt3`
`=4`
`\sqrt{4x-12}+sqrtx{x-3}-1/3sqrt{9x-27}=8`
`đk:x>=3`
`pt<=>2sqrt{x-3}+sqrt{x-3}-sqrt{x-3}=8`
`<=>2sqrt{x-3}=8`
`<=>sqrt{x-3}=4`
`<=>x-3=16`
`<=>x=19`
Vậy `S={19}`
`a)A=\sqrt{4+2sqrt3}`
`=\sqrt{3+2sqrt3+1}`
`=sqrt{(sqrt3+1)^2}`
`=sqrt3+1`
`B)1/(2-sqrt3)+1/(2+sqrt3)`
`=(2+sqrt3)/(4-3)+(2-sqrt3)/(4-3)`
`=2+sqrt3+2-sqrt3`
`=4`
`\sqrt{4x-12}+sqrt{x-3}-1/3sqrt{9x-27}=8`
`đk:x>=3`
`pt<=>2sqrt{x-3}+sqrt{x-3}-sqrt{x-3}=8`
`<=>2sqrt{x-3}=8`
`<=>sqrt{x-3}=4`
`<=>x-3=16`
`<=>x=19`
Vậy `S={19}`
Giai phương trình:
(\(\frac{x+2}{x\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}\))\(\cdot\frac{4\sqrt{x}}{3}\)
1 Giai phương trình:
\(\sqrt{x+9}=5-\sqrt{2x}+4\)
\(\sqrt{x+6}+\sqrt{x-3}-\sqrt{x+1}-\sqrt{x-2}=0\)
Giai phương trình \(3\sqrt{x+4}+3\sqrt{1-x}+4\sqrt{3x+9}=x^2+7x+21\)
1)Giai phương trình
a) (2\(\sqrt{x}\)+3)(\(\sqrt{x}\)-1)-5= 2x-4
b) x\(\sqrt{x}\)-8 = 3\(\sqrt{x}\) (\(\sqrt{x}\)-2)
2) Cho biểu thức: M= 2y-3x\(\sqrt{y}\) + x2
a) Phân tích M thành nhân tử
b) Tính giá trị M khi x = 2; y= \(\dfrac{18}{4+\sqrt{7}}\)
2
\(M=2y-3x\sqrt{y}+x^2=y-2x\sqrt{y}+x^2+y-x\sqrt{y}\\ =\left(\sqrt{y}-x\right)^2+\sqrt{y}\left(\sqrt{y}-x\right)\\ =\left(\sqrt{y}-x\right)\left(\sqrt{y}-x+\sqrt{y}\right)\\ =\left(\sqrt{y}-x\right)\left(2\sqrt{y}-x\right)\)
b
\(y=\dfrac{18}{4+\sqrt{7}}=\dfrac{18\left(4-\sqrt{7}\right)}{16-7}=\dfrac{72-18\sqrt{7}}{9}=\dfrac{72}{9}-\dfrac{18\sqrt{7}}{9}=8-2\sqrt{7}\\ =7-2\sqrt{7}.1+1=\left(\sqrt{7}-1\right)^2\)
Thế x = 2 và y = \(\left(\sqrt{7}-1\right)^2\) vào M được:
\(M=2\left(\sqrt{7}-1\right)^2-3.2.\sqrt{\left(\sqrt{7}-1\right)^2}+2^2\\ =2\left(8-2\sqrt{7}\right)-6.\left(\sqrt{7}-1\right)+4\\ =16-4\sqrt{7}-6\sqrt{7}+6+4\\ =26-10\sqrt{7}\)
1:
a: =>2x-2căn x+3căn x-3-5=2x-4
=>căn x-8=-4
=>căn x=4
=>x=16
b: \(\Leftrightarrow\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+4\right)-3\sqrt{x}\left(\sqrt{x}-2\right)=0\)
=>(căn x-2)(x-căn x+4)=0
=>căn x-2=0
=>x=4
Giai phương trình
a)\(\sqrt{x^2-4x+4}+\sqrt{x^2-6x+9}=1\)
b)\(\sqrt{x+6-4\sqrt{x+2}}+\sqrt{x+11-6\sqrt{x+2}}=1\)
a) pt<=> \(\sqrt{\left(x-2\right)^2}+\sqrt{\left(x-3\right)^2}=1\)
<=>\(\left|x-2\right|+\left|x-3\right|=1\)
đến đây chia 3 trường hợp để phá trị tuyệt đối là ra
b) \(\sqrt{\left(\sqrt{x+2}-2\right)^2}+\sqrt{\left(\sqrt{x+2}-3\right)^2}=1\)
<=> \(\left|\sqrt{x+2}-2\right|+\left|\sqrt{x+2}-3\right|=1\)
câu này cũng tương tự câu a nha
giải phương trình vô tỉ
1,\(\sqrt{1-\sqrt{x}}+\sqrt{4+x}=3\)
2,\(\sqrt{x+1}+\sqrt[3]{7-x}=2\)
3,\(\sqrt{x}+\sqrt{x+1}=\sqrt{x-1}+\sqrt{x+4}\)
4,\(\left(x+3\right)\sqrt{10-x^2}=x^2-x-12\)
5,\(\sqrt[3]{x-1}+\sqrt[3]{x-2}=\sqrt[3]{2x-3}\)
4) Ta có: \(\left(x+3\right)\cdot\sqrt{10-x^2}=x^2-x-12\)
\(\Leftrightarrow\left(x+3\right)\cdot\sqrt{10-x^2}-\left(x-4\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(\sqrt{10-x^2}-x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\\sqrt{10-x^2}=x-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\10-x^2=x^2-8x+16\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x^2-8x+16-10+x^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\2x^2-8x+6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\2\left(x^2-4x+3\right)=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\\left(x-1\right)\left(x-3\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=1\\x=3\end{matrix}\right.\)
Giai phương trình:
\(\left(\sqrt{x+1}-\sqrt{x-2}\right)\left(1+\sqrt{x^2-x-2}\right)=3\)
\(\left(\sqrt{x+1}-\sqrt{x-2}\right)\left(1+\sqrt{x^2-x-2}\right)=3\left(DKXD:x\ge2\right)\)\(\Leftrightarrow\left(\sqrt{x+1}-\sqrt{x-2}\right)\left(\sqrt{x+1}+\sqrt{x-2}\right)\left(1+\sqrt{x\left(x-2\right)+\left(x-2\right)}\right)=3\left(\sqrt{x+1}+\sqrt{x-2}\right)\)\(\Leftrightarrow\left\{\left(x+1\right)-\left(x-2\right)\right\}\left(1+\sqrt{\left(x+1\right)\left(x-2\right)}\right)=3\left(\sqrt{x+1}+\sqrt{x-2}\right)\)
\(\Leftrightarrow3\left(1+\sqrt{\left(x+1\right)\left(x-2\right)}\right)=3\left(\sqrt{x+1}+\sqrt{x-2}\right)\)
\(\Leftrightarrow\sqrt{x+1}-\sqrt{\left(x+1\right)\left(x-2\right)}+\sqrt{x-2}-1=0\)
\(\Leftrightarrow-\left(\sqrt{x+1}-1\right)\left(\sqrt{x-2}-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+1}=1\\\sqrt{x-2}=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\left(loai\right)\\x=3\left(nhan\right)\end{cases}}}\)
Vậy...
Đặt \(\hept{\begin{cases}\sqrt{x+1}=a\\\sqrt{x-2}=b\end{cases}}\left(a,b\ge0\right)\) thì ta có
\(\hept{\begin{cases}a^2-b^2=3\left(1\right)\\\left(a-b\right)\left(1+ab\right)=3\left(2\right)\end{cases}}\)
Lấy (1) - (2) vế theo vế ta được
\(a^2-b^2-\left(a-b\right)\left(1+ab\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(a+b-1-ab\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(1-a\right)\left(b-1\right)=0\)
Với a = b
\(\Leftrightarrow\sqrt{x+1}=\sqrt{x-2}\)
\(\Leftrightarrow x+1=x-2\Leftrightarrow0x=3\left(l\right)\)
Với a = 1
\(\Leftrightarrow\sqrt{x+1}=1\Leftrightarrow x=0\left(l\right)\)
Với b = 1
\(\Leftrightarrow\sqrt{x-2}=1\Leftrightarrow x=3\)
Vậy PT có nghiệm là x = 3