Giải phương trình:\(\sqrt{8x+1}+\sqrt{46-10x}=-x^3+5x^2+4x+1\)
Giải phương trình:
a) \(\left(\sqrt{x^2+x+1}+\sqrt{4x^2+x+1}\right)\left(\sqrt{5x^2+1}-\sqrt{2x^2+1}\right)=3x^2\)
b) \(\sqrt{8x+1}+\sqrt{46-10x}=-x^3+5x^2+4x+1\)
Giai phương trình \(\sqrt{8x+1}+\sqrt{46-10x}=-x^3+5x^2+4x+1\)
....
- giải
- giải
- giải
=> x =1
- bằng mấy nx thì không biết ...
\(\sqrt{8x+1}+\sqrt{46-10x}=-x^3+5x^2+4x+1<=>\sqrt{8x+1}-3+\sqrt{46-10x}-6=-x^3+5x^2+4x+1-3-6\)
\(<=> (x-1)(\frac{8}{\sqrt{8x+1}+3}-5 +x^2-4x-3-\frac{10}{\sqrt{46-10x}+6})=0\)
Xét : \((\frac{8}{\sqrt{8x+1}+3}-5 +x^2-4x-3-\frac{10}{\sqrt{46-10x}+6}) (*)\) ( với điều kiện \(\frac{23}{5}\geq x\geq- \frac{1}{8}\))
\((*)= \frac{8-5(\sqrt{8x+1}+3)}{\sqrt{8x+1}+3} +(x^2-4x-3)-\frac{10}{\sqrt{46-10x}+6})\)
\(= \frac{-7-5(\sqrt{8x+1})}{\sqrt{8x+1}+3} +(x^2-4x-3)-\frac{10}{\sqrt{46-10x}+6}) <0\)
\(=> x=1\)
Giải phương trình :
A/\(\sqrt{X-2}+\sqrt{4-x}=2x_{^{ }}^2-5x-1\)
B/ \(\sqrt{8x+1}+\sqrt{46-10x}=-x^3+5x^2+4x+1\)
Giải pt: \(\sqrt{8x+1}+\sqrt{46-10x}=-x^3+5x^2+4x+1\)
giải pt : \(\sqrt{8x+1}+\sqrt{46-10x}=-x^3+5x^2+4x+1\)
1)giải phương trình \(\sqrt{8x+1}+\sqrt{46-10x}=-x^3+5x^2+4x+1\)
2)cho x,y,z>0 và xy+yz+zx=670 chứng minh
\(P=\frac{x}{x^2-yz+2010}+\frac{y}{y^2-xz+2010}+\frac{z}{z^2-xy+2010}\ge\frac{1}{x+y+z}\)
tiếp tục câu 2,vì máy bị lỗi nên phải tách ra:
Ta có:\(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)
\(=\left(x+y+z\right)\left(\left(x+y+z\right)^2-3\left(xy+xz+yz\right)\right).\)
Dó đó:\(x^3+y^3+z^3-3xyz+2010\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(\left(x+y+z\right)^2-3\left(xy+yz+xz\right)+2010\right)\)
\(=\left(x+y+z\right)^3.\)(2)
TỪ \(\left(1\right),\left(2\right)\)suy ra \(P\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^3}=\frac{1}{x+y+z}.\)
Dấu \(=\)xảy ra khi \(x=y=z=\frac{\sqrt{2010}}{3}\)
2)Ta có:
\(x\left(x^2-yz+2010\right)=x\left(x^2+xy+xz+1340\right)>0\)
Tương tự ta có:\(y\left(y^2-xz+2010\right)>0,z\left(z^2-xy+2010\right)>0\)
Áp dụng svac-xơ ta có:
\(P=\frac{x^2}{x\left(x^2-yz+2010\right)}+\frac{y^2}{y\left(y^2-xz+2010\right)}+\frac{z^2}{z\left(z^2-xy+2010\right)}\)
\(\ge\frac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+2010\left(x+y+z\right)}.\)(1)
gpt \(\sqrt{8x+1}\) \(+\sqrt{46-10x}=x^3+5x^2+4x+1\)
Giải các phương trình :
a) \(x=\sqrt{40-x}.\sqrt{45-x}+\sqrt{45-x}.\sqrt{72-x}+\sqrt{72-x}.\sqrt{40-x}\)
b) \(\sqrt{8x+1}+\sqrt{46-10x}=-x^3+5x^2+4x+1\)
Giải các phương trình sau
\(1)\sqrt{3x+1}+\sqrt{5x+4}=3x^2-x+3\)
\(2)\left(4x-1\right)\sqrt[3]{2-8x^3}=2x\)
1.
ĐKXĐ: \(x\ge-\dfrac{1}{3}\)
\(\Leftrightarrow3x^2-3x+\left(x+1-\sqrt{3x+1}\right)+\left(x+2-\sqrt{5x+4}\right)=0\)
\(\Leftrightarrow3\left(x^2-x\right)+\dfrac{x^2-x}{x+1+\sqrt{3x+1}}+\dfrac{x^2-x}{x+2+\sqrt{5x+4}}=0\)
\(\Leftrightarrow\left(x^2-x\right)\left(3+\dfrac{1}{x+1+\sqrt{3x+1}}+\dfrac{1}{x+2+\sqrt{5x+4}}\right)=0\)
\(\Leftrightarrow x^2-x=0\)
\(\Leftrightarrow...\)
2.
Đặt \(\left\{{}\begin{matrix}2x=a\\\sqrt[3]{2-8x^3}=b\end{matrix}\right.\)
Ta được hệ:
\(\left\{{}\begin{matrix}\left(2a-1\right)b=a\\a^3+b^3=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=2ab\\\left(a+b\right)^3-3ab\left(a+b\right)=2\end{matrix}\right.\)
\(\Rightarrow8\left(ab\right)^3-6\left(ab\right)^2=2\)
\(\Leftrightarrow\left(ab-1\right)\left[4\left(ab\right)^2+ab+1\right]=0\)
\(\Leftrightarrow ab=1\Rightarrow a+b=2\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=2\\ab=1\end{matrix}\right.\) \(\Leftrightarrow a=b=1\)
\(\Rightarrow2x=1\Rightarrow x=\dfrac{1}{2}\)