Tính:
S1=1+3+5+...+(2n+1) (n: số nguyên cho trước).
S2=1+\(\dfrac{1}{2}\)+\(\dfrac{1}{3}\)+\(\dfrac{1}{4}\)+...+\(\dfrac{1}{n}\) (n: số nguyên cho trước).
S3=\(\dfrac{1}{a}\)+\(\dfrac{1}{a+1}\)+\(\dfrac{1}{a+2}\)+...+\(\dfrac{1}{a+100}\).
Viết chương trình tính \(S=1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{n}+...\)cho đến khi S>a với a là một số cho trước ,n là một số nguyên dương
Viết chương trình tính \(S=1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{n}+...\)cho đến khi S>a với a là một số cho trước n là một số nguyên dương (ghi rõ ràng được không ạ)
#include <bits/stdc++.h>
using namespace std;
double s,a;
int i,n;
int main()
{
cin>>a;
s=0;
n=0;
while (s<=a)
{
n=n+1;
s=s+1/(n*1.0);
}
cout<<n;
return 0;
}
Tìm n ϵ Z sao cho n là số nguyên
\(\dfrac{2n-1}{n-1};\dfrac{3n+5}{n+1};\dfrac{4n-2}{n+3};\dfrac{6n-4}{3n+4};\dfrac{n+3}{2n-1};\dfrac{6n-4}{3n-2};\dfrac{2n+3}{3n-1};\dfrac{4n+3}{3n+2}\)
a) Tìm các số nguyên n để phân số sau có giá trị nguyên:
\(A=\dfrac{n-5}{n-3}\)
\(\dfrac{n+4}{n+1}\)
b) Tính A, biết A= \(\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+...+\dfrac{1}{120}\)
a) Ta có \(A=\dfrac{n-5}{n-3}=\dfrac{n-3-2}{n-3}=1-\dfrac{2}{n-3}\). Để \(A\inℤ\) thì \(\dfrac{2}{n-3}\inℤ\) hay \(n-3\) là ước của 2. Suy ra \(n-3\in\left\{\pm1;\pm2\right\}\).
Nếu \(n-3=1\Rightarrow n=4\); \(n-3=-1\Rightarrow n=2\); \(n-3=2\Rightarrow n=5\); \(n-3=-2\Rightarrow n=1\). Vậy để \(A\inℤ\) thì \(n\in\left\{1;2;4;5\right\}\)
\(A=\dfrac{n+4}{n+1}\) làm tương tự.
b) Dễ thấy các số ở mẫu có thể viết dưới dạng:
\(10=1+2+3+4=\dfrac{4\left(4+1\right)}{2}=\dfrac{4.5}{2}\)
\(15=1+2+3+4+5=\dfrac{5\left(5+1\right)}{2}=\dfrac{5.6}{2}\)
\(21=1+2+...+6=\dfrac{6\left(6+1\right)}{2}=\dfrac{6.7}{2}\)
...
\(120=1+2+...+15=\dfrac{15\left(15+1\right)}{2}=\dfrac{15.16}{2}\)
Do đó \(A=\dfrac{2}{4.5}+\dfrac{2}{5.6}+\dfrac{2}{6.7}+...+\dfrac{2}{15.16}\)
\(A=2\left(\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{15.16}\right)\)
\(A=2\left(\dfrac{5-4}{4.5}+\dfrac{6-5}{5.6}+\dfrac{7-6}{6.7}+...+\dfrac{16-15}{15.16}\right)\)
\(A=2\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{15}-\dfrac{1}{16}\right)\)
\(A=2\left(\dfrac{1}{4}-\dfrac{1}{16}\right)\)
\(A=\dfrac{3}{8}\)
1. Viết chương trình yêu cầu nhập số nguyên N từ bàn phím. Tính tổng các số nguyên đầu tiên của N theo công thức S= \(\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}...+\dfrac{1}{2N+1}\)(với N \(\ge\)1). Sau đó in kết quả ra màn hình.
2. Cho dãy số sau: 2; 5; 8; 11. Viết chương trình yêu cầu nhập số nguyên N từ bàn phím. Tính tích E, sau đó in ra màn hình.
E= 2.5.8.11.. } N số nguyên
Bài 1:
uses crt;
var n,i:integer;
s:real;
begin
clrscr;
write('Nhap n='); readln(n);
s:=0;
for i:=1 to n do
s:=s+1/(2*i+1);
writeln(s:4:2);
readln;
end.
Viết thuật toán:
a) S= 1+2+3+....+N
b) S= 1+5+10+15+...5N
c) S= 1+\(\dfrac{1}{a_1}+\dfrac{1}{a_2}+\dfrac{1}{a_3}+....\dfrac{1}{a_N}\)
d) Đếm số hạn nhỏ hơn K cho trước với dãy N số nguyên
a. Liệt kê
Bước 1: Nhâp N
Bước 2: i←1; s←0;
Bước 3: Nếu i>N thì in ra S rồi kết thúc
Bước 4: S←S+i;
Bước 5: i←i+1, quay lại bước 3
b.
Bước 1: Nhâp N
Bước 2: i←1; s←1;
Bước 3: Nếu i>N thì in ra S rồi kết thúc
Bước 4: S←S+i*5;
Bước 5: i←i+1, quay lại bước 3
c.
Bước 1: Nhâp N và dãy a1,a2,a3,...,aN
Bước 2: i←1; s←1;
Bước 3: Nếu i>N thì in ra S rồi kết thúc
Bước 4: S←S+1/ai;
Bước 5: i←i+1, quay lại bước 3
d.
Bước 1: Nhâp N,K và dãy a1,a2,a3,...,aN
Bước 2: i←1; d←0;
Bước 3: Nếu i>N thì in ra d rồi kết thúc
Bước 4: Nếu ai<K thì d←d+1;
Bước 5: i←i+1, quay lại bước 3
a) Cho phân số A=\(\dfrac{2n-3}{n+7}\)
Hỏi có bao nhiêu số tự nhiên n nhỏ hơn 200 để A chưa tối giản.
b) Tìm số tự nhiên n biết:
\(\dfrac{1}{1}\)+\(\dfrac{1}{1+2}\)+\(\dfrac{1}{1+2+3}\)+\(\dfrac{1}{1+2+3+4}\)+....+\(\dfrac{1}{1+2+3+4+...+n}\)=\(\dfrac{200}{101}\)
Giúp với ạ!!!
b: =>\(\dfrac{2}{2}+\dfrac{2}{6}+\dfrac{2}{12}+...+\dfrac{2}{n\left(n+1\right)}=\dfrac{200}{101}\)
=>\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{n\left(n+1\right)}=\dfrac{100}{101}\)
=>1-1/2+1/2-1/3+...+1/n-1/n+1=100/101
=>1-1/(n+1)=100/101
=>1/(n+1)=1/101
=>n+1=101
=>n=100
1. Viết chương trình tính tổng sau:
a) S = \(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{n}\)
b) S = \(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{n}\)
2. Viết chương trình nhập 2 số nguyên a và b. Tìm bội chung nhỏ nhất
3. Cho một dãy số gồm N phân tử:
- Tính tổng các phân tử trong dãy số
- Tìm phân tử lớn nhất
- In ra màn hình các số nguyên tố có trong dãy
BÀI 3
uses crt;
var a: array[1..100] of integer;
i,n,max,s,j: integer;
begin
clrscr;
writeln(' nhap so phan tu cua day'); readln(n);
for i:=1 to n do
begin
writeln('a[',i,']'); readln(a[i]);
end;
max:=a[1];
s:=0;
for i:=1 to n do
begin
if max<a[i] then max:=a[i];
s:=s+a[i];
end;
writeln('so lon nhat trong day tren la:',max);
writeln('tong bang:',s);
writeln('so nguyen to trong mang la:');
j:=1;
for i:=1 to n do
if a[i]>1 then
begin
repeat
inc(j);
until (a[i] mod j=0);
if j>(a[i] div 2) then writeln(a[i]);
j:=1;
end;
readln
end.
1.Tìm các số tự nhiên a,b khác 0 sao cho :
\(\dfrac{a}{5}-\dfrac{z}{b}=\dfrac{2}{15}\).
2.Tìm số tự nhiên n, để các biểu thức là số tự nhiên.
a)A=\(\dfrac{4}{n-1}+\dfrac{6}{n-1}-\dfrac{3}{n-1}\).
b)B=\(\dfrac{2n+9}{n+2}-\dfrac{3n}{n+2}+\dfrac{5n+1}{n+2}\).
giúp mình với mai mình nộp rồi
Bài 2:
a) Ta có: \(A=\dfrac{4}{n-1}+\dfrac{6}{n-1}-\dfrac{3}{n-1}\)
\(=\dfrac{4+6-3}{n-1}\)
\(=\dfrac{7}{n-1}\)
Để A là số tự nhiên thì \(7⋮n-1\)
\(\Leftrightarrow n-1\inƯ\left(7\right)\)
\(\Leftrightarrow n-1\in\left\{1;7\right\}\)
hay \(n\in\left\{2;8\right\}\)
Vậy: \(n\in\left\{2;8\right\}\)
ta có B=2n+9/n+2-3n+5n+1/n+2=4n+10/n+2 Để B là STN thì 4n+10⋮n+2 4n+8+2⋮n+2 4n+8⋮n+2 ⇒2⋮n+2 n+2∈Ư(2) Ư(2)={1;2} Vậy n=0