cho a là stn gồm 13 chữ số 2, b là stn gồm 13 chữ số 1. CMR: ab-5 chia hết cho 3
cho a là stn gồm 13 chữ số 2, b là stn gồm 13 chữ số 1. CMR: ab-5 chia hết cho 3
cho a là stn gồm 13 chữ số 2, b là stn gồm 13 chữ số 1. CMR: ab-5 chia hết cho 3
Trl đúng trả 6 ticks
a=222...2(13 cs 2) suy ra tổng các cs của a là 2x13=26 suy ra a đồng dư với 2(mod3)
b=111...1(13 cs 1) suy ra tổng các cs của b là 1x13=13 suy ra b đồng dư với 1(mod 3)
suy ra a.b đồng dư với 2x1=2(mod 3) suy ra a.b-5 đồng dư với 2-5=-3 đồng dư với 0(mod 3) suy ra đpcm
m tự làm đấy bạn(sử dụng đồng dư thức)
cho a là stn gồm 13 chữ số 2, b là stn gồm 13 chữ số 1. CMR: ab-5 chia hết cho 3
Trl đúng trả 6 ticks
cho a là stn gồm 13 chữ số 2, b là stn gồm 19 chữ số 1. CMR: ab-5 chia hết cho 3
Trl đúng trả 6 ticks
Ta có: \(a=222...2\)(13 chữ số)
\(\Rightarrow\) Tổng các chữ số của a là: \(2.13=26\) chia 3 dư 2
\(\Rightarrow a\equiv2\left(mod3\right)\left(1\right)\)
Ta có: \(b=111...1\)(19 chữ số 1)
=> Tổng các chữ số của b là: \(1.19=19\) chia 3 dư 1
\(\Rightarrow b\equiv1\left(mod3\right)\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow ab-5\equiv1.2-5\left(mod3\right)\)
\(\Rightarrow ab-5\equiv-3\left(mod3\right)\)
\(\Rightarrow ab-5⋮3\)
a=\(2^{13}=8192;b=1^{19}=1\)
áp dụng dấu hiệu chia hết cho 3
ta có: ab-5=\(8912\cdot1-5=8907\)
mà 8+9+0+7=24 ⋮3
suy ra ab-5⋮3
1 tick đc r
có sai thì bỏ qua ạ
cho a là stn gồm 13 chữ số 2, b là stn gồm 19 chữ số 1. CMR: ab-5 chia hết cho 3
Trl đúng trả 6 ticks
1. Cho biết a + 4b chia hết cho 13 ( a,b thuộc N )
CMR 10a + b chia hết cho 13.
2. Tìm STN n sao cho 18n + 3 chia hết cho 7
3. a) Tìm STN có hai chữ số, biết rằng nếu lấy số đó cộng với số gồm hai chữ của số đó viết theo thứ tự ngược lại thì tổng chia hết cho 11.
b) ....................... chia hết cho 15.
Bài 1 : Cho B = 1+3+32 + 33 +....+ 359 . Chứng mình rằng : B chia hết cho 4 ;13 va 40
Bài 2 : Tìm STN có 3 chữ số chia hết cho 45 , biết rằng hiệu giữa số đó và số gồm chính 3 chữ số ấy viết theo thứ tự ngược lai = 297
Bài 3 : Hai STN a và 4a có tổng các chữ số = nhau . Chứng minh rằng a chia hết cho 3
Bài 1 : Cho B = 1+3+32 + 33 +....+ 359 . Chứng mình rằng : B chia hết cho 4 ;13 va 40
Bài 2 : Tìm STN có 3 chữ số chia hết cho 45 , biết rằng hiệu giữa số đó và số gồm chính 3 chữ số ấy viết theo thứ tự ngược lai = 297
Bài 3 : Hai STN a và 4a có tổng các chữ số = nhau . Chứng minh rằng a chia hết cho 3
Bài 1: a) ab/abc là stn có 2/3 chữ số CMR
ab+ba chia hết cho 11
b) abc-cba chia hết cho 99
a)
Ta có ab/abc là số có 2 chữ số CMR (chữ số hàng đơn vị khác 0).
Đặt ab = 10a + b và abc = 100a + 10b + c.
Theo đề bài, ta có phương trình:
(10a + b + 10b + a)/(100a + 10b + c) chia hết cho 11. (11a + 11b)/(100a + 10b + c) chia hết cho 11.
Điều này có nghĩa là 11a + 11b chia hết cho 100a + 10b + c.
Vì 11a + 11b = 11(a + b) và 100a + 10b + c = 11(9a + b) + c, ta có thể viết lại phương trình trên dưới dạng:
11(a + b) chia hết cho 11(9a + b) + c. Do đó, c chia hết cho 11.
Vậy, c là một số chia hết cho 11.
b)
Ta có abc - cba = 100a + 10b + c - (100c + 10b + a) = 99a - 99c = 99(a - c).
Vì 99(a - c) chia hết cho 99, ta có abc - cba chia hết cho 99.